King Benjamin, Porta-Sánchez Andreu, Massé Stéphane, Zamiri Nima, Balasundaram Krishanand, Kusha Marjan, Jackson Nicholas, Haldar Shouvik, Umapathy Karthikeyan, Nanthakumar Kumaraswamy
University of Western Australia, Perth, Australia.
University Health Network, Toronto, Ontario, Canada.
Heart Rhythm. 2017 Apr;14(4):608-615. doi: 10.1016/j.hrthm.2017.01.023. Epub 2017 Jan 17.
Endocardial mapping tools use variable interelectrode resolution, whereas body surface mapping tools use narrow bandpass filtering (BPF) to map fibrillatory mechanisms established by high-resolution optical imaging.
The purpose of this study was to study the effect of resolution and BPF on the underlying mechanism being mapped.
Hearts from 14 healthy New Zealand white rabbits were Langendorff perfused. We studied the effect of spatial resolution and BPF on the location and characterization of rotors by comparing phase singularities detected by high-resolution unfiltered optical maps and of fibrillating myocardium with decimated and filtered maps with simulated electrode spacing of 2, 5, and 8 mm.
As we decimated the maps with 2-mm, 5-mm, and 8-mm interelectrode spacing, the mean ( ± SD) number of rotors detected decreased from 10.2 ± 9.6, 1.6 ± 3.2, and 0.2 ± 0.5, respectively. Lowering the resolution led to synthesized pseudo-rotors that may be inappropriately identified. Applying a BPF led to fewer mean phase singularities detected (248 ± 207 vs 333 ± 130; P<.01), giving the appearance of pseudo-spatial stability measured as translation index (with BPF 3.6 ± 0.4 mm vs 4.0 ± 0.5 mm without BPF; P<.01) and pseudo-temporal stability with longer duration (70.0 ± 17.6 ms in BPF maps vs 44.1 ± 6.6 ms in unfiltered maps; P<.001) than true underlying fibrillating myocardium mapped.
Electrode resolution and BPF of electrograms can result in distortion of the underlying electrophysiology of fibrillation. Newer mapping techniques need to demonstrate sensitivity analysis to quantify the degree of distortion before clinical use to avoid inaccurate electrophysiologic interpretation.
心内膜标测工具采用可变的电极间分辨率,而体表标测工具则使用窄带通滤波(BPF)来标测通过高分辨率光学成像所确立的颤动机制。
本研究旨在探讨分辨率和BPF对所标测的潜在机制的影响。
对14只健康新西兰白兔的心脏进行Langendorff灌注。我们通过比较高分辨率未滤波光学图检测到的相位奇点,以及将模拟电极间距为2、5和8毫米的抽取和滤波图与颤动心肌,研究空间分辨率和BPF对转子位置及特征的影响。
当我们将电极间距为2毫米、5毫米和8毫米的图进行抽取时,检测到的转子平均(±标准差)数量分别从10.2±9.6、1.6±3.2和0.2±0.5减少。分辨率降低会导致可能被不恰当识别的合成伪转子。应用BPF会使检测到的平均相位奇点减少(248±207对333±130;P<0.01),呈现出以平移指数衡量的伪空间稳定性(有BPF时为3.6±0.4毫米,无BPF时为4.0±0.5毫米;P<0.01)以及比所标测的真正颤动心肌更长持续时间的伪时间稳定性(BPF图中为70.0±17.6毫秒,未滤波图中为44.1±6.6毫秒;P<0.001)。
电极分辨率和心电图的BPF可导致颤动潜在电生理学的失真。新型标测技术在临床应用前需要进行敏感性分析,以量化失真程度,避免电生理解释不准确。