Suppr超能文献

病因学流行病学中的三角剖分法

Triangulation in aetiological epidemiology.

作者信息

Lawlor Debbie A, Tilling Kate, Davey Smith George

机构信息

MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.

School of Social and Community Medicine, University of Bristol, Bristol, UK.

出版信息

Int J Epidemiol. 2016 Dec 1;45(6):1866-1886. doi: 10.1093/ije/dyw314.

Abstract

Triangulation is the practice of obtaining more reliable answers to research questions through integrating results from several different approaches, where each approach has different key sources of potential bias that are unrelated to each other. With respect to causal questions in aetiological epidemiology, if the results of different approaches all point to the same conclusion, this strengthens confidence in the finding. This is particularly the case when the key sources of bias of some of the approaches would predict that findings would point in opposite directions if they were due to such biases. Where there are inconsistencies, understanding the key sources of bias of each approach can help to identify what further research is required to address the causal question. The aim of this paper is to illustrate how triangulation might be used to improve causal inference in aetiological epidemiology. We propose a minimum set of criteria for use in triangulation in aetiological epidemiology, summarize the key sources of bias of several approaches and describe how these might be integrated within a triangulation framework. We emphasize the importance of being explicit about the expected direction of bias within each approach, whenever this is possible, and seeking to identify approaches that would be expected to bias the true causal effect in different directions. We also note the importance, when comparing results, of taking account of differences in the duration and timing of exposures. We provide three examples to illustrate these points.

摘要

三角剖分法是一种通过整合几种不同方法的结果来获得更可靠的研究问题答案的实践方法,其中每种方法都有不同的潜在偏差关键来源,且这些来源彼此不相关。对于病因流行病学中的因果问题,如果不同方法的结果都指向同一个结论,这会增强对该发现的信心。当某些方法的关键偏差来源会预测如果结果是由这些偏差导致的,那么结果会指向相反方向时,情况尤其如此。当出现不一致时,了解每种方法的关键偏差来源有助于确定需要进行哪些进一步的研究来解决因果问题。本文的目的是说明如何使用三角剖分法来改进病因流行病学中的因果推断。我们提出了一套用于病因流行病学三角剖分法的最低标准,总结了几种方法的关键偏差来源,并描述了如何在三角剖分框架内将这些来源整合起来。我们强调,只要有可能,就必须明确每种方法中偏差的预期方向,并寻找预期会使真实因果效应产生不同方向偏差的方法。我们还指出,在比较结果时,考虑暴露的持续时间和时间差异的重要性。我们提供了三个例子来说明这些要点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c606/5841843/b2d99b632b8b/dyw314f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验