Exeter Diabetes Group (ExCEED), College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
Epidemiology and Public Health Group, College of Medicine and Health, University of Exeter, Exeter, United Kingdom.
PLoS Genet. 2021 Sep 8;17(9):e1009783. doi: 10.1371/journal.pgen.1009783. eCollection 2021 Sep.
In this paper we review the methodological underpinnings of the general pharmacogenetic approach for uncovering genetically-driven treatment effect heterogeneity. This typically utilises only individuals who are treated and relies on fairly strong baseline assumptions to estimate what we term the 'genetically moderated treatment effect' (GMTE). When these assumptions are seriously violated, we show that a robust but less efficient estimate of the GMTE that incorporates information on the population of untreated individuals can instead be used. In cases of partial violation, we clarify when Mendelian randomization and a modified confounder adjustment method can also yield consistent estimates for the GMTE. A decision framework is then described to decide when a particular estimation strategy is most appropriate and how specific estimators can be combined to further improve efficiency. Triangulation of evidence from different data sources, each with their inherent biases and limitations, is becoming a well established principle for strengthening causal analysis. We call our framework 'Triangulation WIthin a STudy' (TWIST)' in order to emphasise that an analysis in this spirit is also possible within a single data set, using causal estimates that are approximately uncorrelated, but reliant on different sets of assumptions. We illustrate these approaches by re-analysing primary-care-linked UK Biobank data relating to CYP2C19 genetic variants, Clopidogrel use and stroke risk, and data relating to APOE genetic variants, statin use and Coronary Artery Disease.
在本文中,我们回顾了揭示遗传驱动的治疗效果异质性的一般药物遗传学方法的方法论基础。这通常只利用接受治疗的个体,并依赖相当强的基线假设来估计我们所谓的“遗传调节治疗效果”(GMTE)。当这些假设严重违反时,我们表明,一种稳健但效率较低的 GMTE 估计方法,该方法纳入了未接受治疗个体的群体信息,可以替代使用。在部分违反的情况下,我们澄清了孟德尔随机化和修正混杂因素调整方法何时也可以为 GMTE 提供一致的估计。然后描述了一个决策框架,以决定特定的估计策略在何时最适用,以及如何组合特定的估计器以进一步提高效率。从不同数据源收集证据,每种数据源都有其固有的偏差和局限性,这已成为加强因果分析的既定原则。我们将我们的框架称为“研究内三角”(TWIST),以强调这种精神的分析也可以在单个数据集内进行,使用近似不相关但依赖于不同假设集的因果估计。我们通过重新分析与 CYP2C19 基因变异、氯吡格雷使用和中风风险相关的主要护理相关的英国生物库数据,以及与 APOE 基因变异、他汀类药物使用和冠心病相关的数据,来说明这些方法。