Suppr超能文献

玉米瘤状异染色质中的减数分裂交叉互换

Meiotic Crossing Over in Maize Knob Heterochromatin.

作者信息

Stack Stephen M, Shearer Lindsay A, Lohmiller Leslie, Anderson Lorinda K

机构信息

Department of Biology, Colorado State University, Fort Collins, Colorado 80523

Department of Biology, Colorado State University, Fort Collins, Colorado 80523.

出版信息

Genetics. 2017 Mar;205(3):1101-1112. doi: 10.1534/genetics.116.196089. Epub 2017 Jan 20.

Abstract

There is ample evidence that crossing over is suppressed in heterochromatin associated with centromeres and nucleolus organizers (NORs). This characteristic has been attributed to all heterochromatin, but the generalization may not be justified. To investigate the relationship of crossing over to heterochromatin that is not associated with centromeres or NORs, we used a combination of fluorescence hybridization of the maize 180-bp knob repeat to show the locations of knob heterochromatin and fluorescent immunolocalization of MLH1 protein and AFD1 protein to show the locations of MLH1 foci on maize synaptonemal complexes (SCs, pachytene chromosomes). MLH1 foci correspond to the location of recombination nodules (RNs) that mark sites of crossing over. We found that MLH1 foci occur at similar frequencies per unit length of SC in interstitial knobs and in the 1 µm segments of SC in euchromatin immediately to either side of interstitial knobs. These results indicate not only that crossing over occurs within knob heterochromatin, but also that crossing over is not suppressed in the context of SC length in maize knobs. However, because there is more DNA per unit length of SC in knobs compared to euchromatin, crossing over is suppressed (but not eliminated) in knobs in the context of DNA length compared to adjacent euchromatin.

摘要

有充分证据表明,与着丝粒和核仁组织区(NORs)相关的异染色质中交叉互换受到抑制。这一特性曾被认为适用于所有异染色质,但这种一概而论可能并不合理。为了研究交叉互换与不与着丝粒或NORs相关的异染色质之间的关系,我们结合了玉米180 bp的结节重复序列的荧光杂交来显示结节异染色质的位置,以及MLH1蛋白和AFD1蛋白的荧光免疫定位来显示MLH1焦点在玉米联会复合体(SCs,粗线期染色体)上的位置。MLH1焦点对应于标记交叉互换位点的重组结节(RNs)的位置。我们发现,在间质结节以及间质结节两侧常染色质中SC的1 µm片段中,每单位长度的SC上MLH1焦点出现的频率相似。这些结果不仅表明交叉互换发生在结节异染色质内,还表明在玉米结节中,就SC长度而言交叉互换并未受到抑制。然而,由于与常染色质相比,结节中每单位长度的SC含有更多的DNA,所以就DNA长度而言,与相邻常染色质相比,结节中的交叉互换受到抑制(但未消除)。

相似文献

1
Meiotic Crossing Over in Maize Knob Heterochromatin.
Genetics. 2017 Mar;205(3):1101-1112. doi: 10.1534/genetics.116.196089. Epub 2017 Jan 20.
4
Alterations in Heterochromatic Knobs in Maize Callus Culture by Breakage-Fusion-Bridge Cycle and Unequal Crossing Over.
Cytogenet Genome Res. 2018;154(2):107-118. doi: 10.1159/000488067. Epub 2018 Apr 11.
5
Meiotic drive of chromosomal knobs reshaped the maize genome.
Genetics. 1999 Sep;153(1):415-26. doi: 10.1093/genetics/153.1.415.
6
High-resolution crossover maps for each bivalent of Zea mays using recombination nodules.
Genetics. 2003 Oct;165(2):849-65. doi: 10.1093/genetics/165.2.849.
7
Maize chromosomal knobs are located in gene-dense areas and suppress local recombination.
Chromosoma. 2013 Mar;122(1-2):67-75. doi: 10.1007/s00412-012-0391-8. Epub 2012 Dec 9.
8
Meiotic recombination analysis in female ducks (Anas platyrhynchos).
Genetica. 2016 Jun;144(3):307-12. doi: 10.1007/s10709-016-9899-9. Epub 2016 Apr 26.

引用本文的文献

2
A Heterochromatic Knob Reducing the Flowering Time in Maize.
Front Genet. 2022 Feb 24;12:799681. doi: 10.3389/fgene.2021.799681. eCollection 2021.
3
The Formation of Bivalents and the Control of Plant Meiotic Recombination.
Front Plant Sci. 2021 Sep 7;12:717423. doi: 10.3389/fpls.2021.717423. eCollection 2021.
4
Rewiring Meiosis for Crop Improvement.
Front Plant Sci. 2021 Jul 19;12:708948. doi: 10.3389/fpls.2021.708948. eCollection 2021.
5
DNA Organization along Pachytene Chromosome Axes and Its Relationship with Crossover Frequencies.
Int J Mol Sci. 2021 Feb 27;22(5):2414. doi: 10.3390/ijms22052414.
6
European maize genomes highlight intraspecies variation in repeat and gene content.
Nat Genet. 2020 Sep;52(9):950-957. doi: 10.1038/s41588-020-0671-9. Epub 2020 Jul 27.
9
Broad-scale recombination pattern in the primitive bird Rhea americana (Ratites, Palaeognathae).
PLoS One. 2017 Nov 2;12(11):e0187549. doi: 10.1371/journal.pone.0187549. eCollection 2017.

本文引用的文献

1
High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events.
Front Plant Sci. 2016 Mar 23;7:308. doi: 10.3389/fpls.2016.00308. eCollection 2016.
4
The molecular biology of meiosis in plants.
Annu Rev Plant Biol. 2015;66:297-327. doi: 10.1146/annurev-arplant-050213-035923. Epub 2014 Dec 1.
5
Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers.
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13415-20. doi: 10.1073/pnas.1406846111. Epub 2014 Sep 2.
6
Maize chromosomal knobs are located in gene-dense areas and suppress local recombination.
Chromosoma. 2013 Mar;122(1-2):67-75. doi: 10.1007/s00412-012-0391-8. Epub 2012 Dec 9.
7
AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group ditsribution.
Theor Appl Genet. 1999 Aug;99(3-4):425-31. doi: 10.1007/s001220051253.
8
The tomato genome sequence provides insights into fleshy fruit evolution.
Nature. 2012 May 30;485(7400):635-41. doi: 10.1038/nature11119.
9
Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution.
Chromosoma. 2012 Apr;121(2):201-8. doi: 10.1007/s00412-011-0354-5. Epub 2011 Dec 2.
10
Protection of repetitive DNA borders from self-induced meiotic instability.
Nature. 2011 Aug 7;477(7362):115-9. doi: 10.1038/nature10331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验