Suppr超能文献

加拿大六个省份实施的针对无初级保健提供者患者的集中等候名单的比较分析:研究方案。

A comparative analysis of centralized waiting lists for patients without a primary care provider implemented in six Canadian provinces: study protocol.

作者信息

Breton Mylaine, Green Michael, Kreindler Sara, Sutherland Jason, Jbilou Jalila, Wong Sabrina T, Shaw Jay, Crooks Valorie A, Contandriopoulos Damien, Smithman Mélanie Ann, Brousselle Astrid

机构信息

Charles-LeMoyne Hospital Research Centre, Sherbrooke University, Longueuil Campus, 150 Place Charles-LeMoyne, Office 200, Longueuil, QC, J4K 0A8, Canada.

Family Medicine and Public Health Sciences and CHSPR, Queen's University, Abramsky Hall, 3rd Floor 21 Arch St., Kingston, ON, K7L 3N6, Canada.

出版信息

BMC Health Serv Res. 2017 Jan 21;17(1):60. doi: 10.1186/s12913-017-2007-8.

Abstract

BACKGROUND

Having a regular primary care provider (i.e., family physician or nurse practitioner) is widely considered to be a prerequisite for obtaining healthcare that is timely, accessible, continuous, comprehensive, and well-coordinated with other parts of the healthcare system. Yet, 4.6 million Canadians, approximately 15% of Canada's population, are unattached; that is, they do not have a regular primary care provider. To address the critical need for attachment, especially for more vulnerable patients, six Canadian provinces have implemented centralized waiting lists for unattached patients. These waiting lists centralize unattached patients' requests for a primary care provider in a given territory and match patients with providers. From the little information we have on each province's centralized waiting list, we know the way they work varies significantly from province to province. The main objective of this study is to compare the different models of centralized waiting lists for unattached patients implemented in six provinces of Canada to each other and to available scientific knowledge to make recommendations on ways to improve their design in an effort to increase attachment of patients to a primary care provider.

METHODS

A logic analysis approach developed in three steps will be used. Step 1: build logic models that describe each province's centralized waiting list through interviews with key stakeholders in each province; step 2: develop a conceptual framework, separate from the provincially informed logic models, that identifies key characteristics of centralized waiting lists for unattached patients and factors influencing their implementation through a literature review and interviews with experts; step 3: compare the logic models to the conceptual framework to make recommendations to improve centralized waiting lists in different provinces during a pan Canadian face-to-face exchange with decision-makers, clinicians and researchers.

DISCUSSION

This study is based on an inter-provincial learning exchange approach where we propose to compare centralized waiting lists and analyze variations in strategies used to increase attachment to a regular primary care provider. Fostering inter-provincial healthcare systems connectivity to improve centralized waiting lists' practices across Canada can lever attachment to a regular provider for timely access to continuous, comprehensive and coordinated healthcare for all Canadians and particular for those who are vulnerable.

摘要

背景

拥有一名固定的初级保健提供者(即家庭医生或执业护士)被广泛认为是获得及时、可及、持续、全面且与医疗系统其他部分协调良好的医疗服务的先决条件。然而,460万加拿大人,约占加拿大人口的15%,没有固定的初级保健提供者;也就是说,他们没有一名固定的初级保健提供者。为满足建立医患关系的迫切需求,特别是为更脆弱的患者,加拿大六个省份为无固定初级保健提供者的患者实施了集中等候名单。这些等候名单将特定地区无固定初级保健提供者的患者对初级保健提供者的请求集中起来,并为患者与提供者进行匹配。从我们所掌握的关于每个省份集中等候名单的少量信息来看,我们知道它们的运作方式在各省之间差异很大。本研究的主要目的是将加拿大六个省份实施的针对无固定初级保健提供者的不同集中等候名单模式相互比较,并与现有的科学知识进行比较,以便就如何改进其设计提出建议,从而努力增加患者与初级保健提供者建立医患关系的比例。

方法

将采用分三步开发的逻辑分析方法。第一步:通过与每个省份的关键利益相关者进行访谈,构建描述每个省份集中等候名单的逻辑模型;第二步:通过文献综述和专家访谈,开发一个与基于各省情况的逻辑模型不同的概念框架,该框架确定无固定初级保健提供者的集中等候名单的关键特征以及影响其实施的因素;第三步:在与决策者、临床医生和研究人员进行的全加拿大面对面交流中,将逻辑模型与概念框架进行比较,为改进不同省份的集中等候名单提出建议。

讨论

本研究基于一种省际学习交流方法,我们提议比较集中等候名单,并分析用于增加与固定初级保健提供者建立医患关系的策略差异。促进省际医疗系统的连通性,以改进全加拿大集中等候名单的做法,可以促使人们与固定提供者建立医患关系,从而让所有加拿大人,特别是弱势群体能够及时获得持续、全面和协调的医疗服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a89/5251310/26c7ad566330/12913_2017_2007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验