Suppr超能文献

用于分析原子分辨率电子能量损失谱的张量分解

Tensor decompositions for the analysis of atomic resolution electron energy loss spectra.

作者信息

Spiegelberg Jakob, Rusz Ján, Pelckmans Kristiaan

机构信息

Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden.

Department of Information Technology, Uppsala University, Box 337, S-751 05 Uppsala, Sweden.

出版信息

Ultramicroscopy. 2017 Apr;175:36-45. doi: 10.1016/j.ultramic.2016.12.025. Epub 2017 Jan 11.

Abstract

A selection of tensor decomposition techniques is presented for the detection of weak signals in electron energy loss spectroscopy (EELS) data. The focus of the analysis lies on the correct representation of the simulated spatial structure. An analysis scheme for EEL spectra combining two-dimensional and n-way decomposition methods is proposed. In particular, the performance of robust principal component analysis (ROBPCA), Tucker Decompositions using orthogonality constraints (Multilinear Singular Value Decomposition (MLSVD)) and Tucker decomposition without imposed constraints, canonical polyadic decomposition (CPD) and block term decompositions (BTD) on synthetic as well as experimental data is examined.

摘要

本文介绍了一系列张量分解技术,用于检测电子能量损失谱(EELS)数据中的微弱信号。分析的重点在于模拟空间结构的正确表示。提出了一种结合二维和n路分解方法的EEL光谱分析方案。具体而言,研究了稳健主成分分析(ROBPCA)、使用正交性约束的塔克分解(多线性奇异值分解(MLSVD))和无约束的塔克分解、典范多向分解(CPD)以及合成数据和实验数据上的块项分解(BTD)的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验