Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark.
J Chem Phys. 2017 Apr 7;146(13):134112. doi: 10.1063/1.4979571.
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
我们提出了一种新的四索引电子排斥积分的积分格式,其中结合了一些策略,如分辨率的身份 (RI) 近似和其他更一般的张量分解技术,以及原子分批方案。3 索引 RI 积分张量被分成由原子对定义的子张量,我们在这些原子对上执行加速分解到规范乘积 (CP) 格式。在第一步中,通过重复奇异值分解并降低秩,将 RI 积分分解为高秩 CP 样格式,其中使用 Tucker 分解作为中间步骤来降低算法的前置因子。在分解 RI 子张量 (在库仑度量内) 之后,可以将它们重新组装成全分解张量 (RC 方法) 或保持原子分批格式 (ABC 方法)。在第一种情况下,积分非常类似于近年来受到关注的张量超收缩积分格式,因为它允许 MP2 和一些耦合簇方法的四次标度实现。在 MP2 水平上,比较了 RC 和 ABC 方法在效率和存储需求方面的差异。此外,还评估了这种方法的整体准确性。初步的测试计算表明,该方法具有良好的准确性,并且不限于小系统。