Beheshti Iman, Demirel Hasan, Farokhian Farnaz, Yang Chunlan, Matsuda Hiroshi
Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi-cho, Kodaira, Tokyo 187-8551, Japan.
Biomedical Image Processing Lab, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey.
Comput Methods Programs Biomed. 2016 Dec;137:177-193. doi: 10.1016/j.cmpb.2016.09.019. Epub 2016 Sep 26.
This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data.
The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance.
The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data.
An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models.
本文提出了一种基于特征排序的自动计算机辅助诊断(CAD)系统,用于利用结构磁共振成像(sMRI)数据检测阿尔茨海默病(AD)。
所提出的CAD系统由四个系统阶段组成。首先,使用基于体素的形态测量技术分析AD患者灰质(GM)与健康对照(HC)灰质的全局和局部差异。目的是将GM体积中的显著局部差异识别为感兴趣体积(VOI)。其次,提取VOI的体素强度值作为原始特征。第三,使用七种特征排序方法对原始特征进行排序,即统计依赖性(SD)、互信息(MI)、信息增益(IG)、皮尔逊相关系数(PCC)、t检验分数(TS)、费舍尔准则(FC)和基尼指数(GI)。得分较高的特征具有更强的区分能力。为了确定顶级特征的数量,计算基于由AD组和HC组组成的训练集的估计分类误差,并选择使该误差最小化的向量大小作为顶级区分特征。第四,使用支持向量机(SVM)进行分类。此外,引入了特征排序方法之间的数据融合方法以提高分类性能。
使用来自ADNI的数据集(130例AD和130例HC)进行10倍交叉验证,对所提出的方法进行评估。使用sMRI数据,所提出的AD自动诊断系统的分类准确率高达9成2.48%。
提出了一种基于特征排序方法和分类误差的AD分类自动CAD系统。在这方面,评估了七种特征排序方法(即SD、MI、IG、PCC、TS、FC和GI)。顶级区分特征的最佳大小由训练阶段的分类误差估计确定。实验结果表明,所提出系统的性能与最先进的分类模型相当。