Biomedical Image Processing Lab, Department of Electrical & Electronic Engineering, Eastern Mediterranean University, Gazimagusa, Mersin 10, Turkey.
Comput Biol Med. 2015 Sep;64:208-16. doi: 10.1016/j.compbiomed.2015.07.006. Epub 2015 Jul 20.
High-dimensional classification methods have been a major target of machine learning for the automatic classification of patients who suffer from Alzheimer's disease (AD). One major issue of automatic classification is the feature-selection method from high-dimensional data. In this paper, a novel approach for statistical feature reduction and selection in high-dimensional magnetic resonance imaging (MRI) data based on the probability distribution function (PDF) is introduced. To develop an automatic computer-aided diagnosis (CAD) technique, this research explores the statistical patterns extracted from structural MRI (sMRI) data on four systematic levels. First, global and local differences of gray matter in patients with AD compared to healthy controls (HCs) using the voxel-based morphometric (VBM) technique with 3-Tesla 3D T1-weighted MRI are investigated. Second, feature extraction based on the voxel clusters detected by VBM on sMRI and voxel values as volume of interest (VOI) is used. Third, a novel statistical feature-selection process is employed, utilizing the PDF of the VOI to represent statistical patterns of the respective high-dimensional sMRI sample. Finally, the proposed feature-selection method for early detection of AD with support vector machine (SVM) classifiers compared to other standard feature selection methods, such as partial least squares (PLS) techniques, is assessed. The performance of the proposed technique is evaluated using 130 AD and 130 HC MRI data from the ADNI dataset with 10-fold cross validation(1). The results show that the PDF-based feature selection approach is a reliable technique that is highly competitive with respect to the state-of-the-art techniques in classifying AD from high-dimensional sMRI samples.
高维分类方法一直是机器学习的主要目标,用于自动对患有阿尔茨海默病(AD)的患者进行分类。自动分类的一个主要问题是从高维数据中选择特征的方法。本文提出了一种基于概率分布函数(PDF)的高维磁共振成像(MRI)数据的统计特征降维和选择的新方法。为了开发自动计算机辅助诊断(CAD)技术,本研究探索了从结构 MRI(sMRI)数据中提取的统计模式,涉及四个系统水平。首先,使用 3T 3D T1 加权 MRI 的基于体素的形态计量学(VBM)技术研究 AD 患者与健康对照组(HCs)之间的灰质全局和局部差异。其次,基于 VBM 在 sMRI 上检测到的体素簇和作为感兴趣区(VOI)的体素值进行特征提取。第三,采用一种新的统计特征选择过程,利用 VOI 的 PDF 来表示各自高维 sMRI 样本的统计模式。最后,与其他标准特征选择方法(如偏最小二乘法(PLS)技术)相比,使用支持向量机(SVM)分类器评估了针对 AD 的早期检测的基于 PDF 的特征选择方法。使用来自 ADNI 数据集的 130 个 AD 和 130 个 HC MRI 数据,采用 10 倍交叉验证(1)评估了所提出技术的性能。结果表明,基于 PDF 的特征选择方法是一种可靠的技术,在对高维 sMRI 样本进行 AD 分类方面具有很高的竞争力。