Suppr超能文献

长轴突束病变促使阿尔茨海默病进展。

Long Longitudinal Tract Lesion Contributes to the Progression of Alzheimer's Disease.

作者信息

Luo Caimei, Li Mengchun, Qin Ruomeng, Chen Haifeng, Huang Lili, Yang Dan, Ye Qing, Liu Renyuan, Xu Yun, Zhao Hui, Bai Feng

机构信息

The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.

Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.

出版信息

Front Neurol. 2020 Oct 16;11:503235. doi: 10.3389/fneur.2020.503235. eCollection 2020.

Abstract

The degenerative pattern of white matter (WM) microstructures during Alzheimer's disease (AD) and its relationship with cognitive function have not yet been clarified. The present research aimed to explore the alterations of the WM microstructure and its impact on amnestic mild cognitive (aMCI) and AD patients. Mechanical learning methods were used to explore the validity of WM microstructure lesions on the classification in AD spectrum disease. Neuropsychological data and diffusion tensor imaging (DTI) images were collected from 28 AD subjects, 31 aMCI subjects, and 27 normal controls (NC). Tract-based spatial statistics (TBSS) were used to extract diffusion parameters in WM tracts. We performed ANOVA analysis to compare diffusion parameters and clinical features among the three groups. Partial correlation analysis was used to explore the relationship between diffusion metrics and cognitive functions controlling for age, gender, and years of education. Additionally, we performed the support vector machine (SVM) classification to determine the discriminative ability of DTI metrics in the differentiation of aMCI and AD patients from controls. As compared to controls or aMCI patients, AD patients displayed widespread WM lesions, including in the inferior longitudinal fasciculus, inferior fronto-occipital fasciculi, and superior longitudinal fasciculus. Significant correlations between fractional anisotropy (FA), mean diffusivity (MD), and radial diffusion (RD) of the long longitudinal tract and memory deficits were found in aMCI and AD groups, respectively. Furthermore, through SVM classification, we found DTI indicators generated by FA and MD parameters can effectively distinguish AD patients from the control group with accuracy rates of up to 89 and 85%, respectively. The WM microstructure is extensively disrupted in AD patients, and the WM integrity of the long longitudinal tract is closely related to memory, which would hold potential value for monitoring the progression of AD. The method of classification based on SVM and WM damage features may be objectively helpful to the classification of AD diseases.

摘要

阿尔茨海默病(AD)期间白质(WM)微观结构的退化模式及其与认知功能的关系尚未阐明。本研究旨在探讨WM微观结构的改变及其对遗忘型轻度认知障碍(aMCI)和AD患者的影响。采用机器学习方法探讨WM微观结构病变在AD谱系疾病分类中的有效性。收集了28例AD患者、31例aMCI患者和27例正常对照(NC)的神经心理学数据和扩散张量成像(DTI)图像。基于体素的空间统计学(TBSS)用于提取WM束中的扩散参数。我们进行了方差分析以比较三组之间的扩散参数和临床特征。偏相关分析用于探讨在控制年龄、性别和受教育年限的情况下扩散指标与认知功能之间的关系。此外,我们进行了支持向量机(SVM)分类以确定DTI指标在区分aMCI和AD患者与对照中的判别能力。与对照组或aMCI患者相比,AD患者表现出广泛的WM病变,包括下纵束、额枕下束和上纵束。在aMCI组和AD组中,分别发现长纵束的分数各向异性(FA)、平均扩散率(MD)和径向扩散(RD)与记忆缺陷之间存在显著相关性。此外,通过SVM分类,我们发现由FA和MD参数生成的DTI指标可以有效区分AD患者与对照组,准确率分别高达89%和85%。AD患者的WM微观结构受到广泛破坏,长纵束的WM完整性与记忆密切相关,这对于监测AD的进展具有潜在价值。基于SVM和WM损伤特征的分类方法可能对AD疾病的分类有客观帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ed0/7597387/d5c1a3679c50/fneur-11-503235-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验