Suppr超能文献

基于片段筛选在人细胞中进行配体和靶点发现

Ligand and Target Discovery by Fragment-Based Screening in Human Cells.

作者信息

Parker Christopher G, Galmozzi Andrea, Wang Yujia, Correia Bruno E, Sasaki Kenji, Joslyn Christopher M, Kim Arthur S, Cavallaro Cullen L, Lawrence R Michael, Johnson Stephen R, Narvaiza Iñigo, Saez Enrique, Cravatt Benjamin F

机构信息

Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Cell. 2017 Jan 26;168(3):527-541.e29. doi: 10.1016/j.cell.2016.12.029. Epub 2017 Jan 19.

Abstract

Advances in the synthesis and screening of small-molecule libraries have accelerated the discovery of chemical probes for studying biological processes. Still, only a small fraction of the human proteome has chemical ligands. Here, we describe a platform that marries fragment-based ligand discovery with quantitative chemical proteomics to map thousands of reversible small molecule-protein interactions directly in human cells, many of which can be site-specifically determined. We show that fragment hits can be advanced to furnish selective ligands that affect the activity of proteins heretofore lacking chemical probes. We further combine fragment-based chemical proteomics with phenotypic screening to identify small molecules that promote adipocyte differentiation by engaging the poorly characterized membrane protein PGRMC2. Fragment-based screening in human cells thus provides an extensive proteome-wide map of protein ligandability and facilitates the coordinated discovery of bioactive small molecules and their molecular targets.

摘要

小分子文库合成与筛选技术的进步加速了用于研究生物过程的化学探针的发现。然而,人类蛋白质组中只有一小部分具有化学配体。在此,我们描述了一个平台,该平台将基于片段的配体发现与定量化学蛋白质组学相结合,以直接在人类细胞中绘制数千种可逆的小分子-蛋白质相互作用图谱,其中许多相互作用可以位点特异性地确定。我们表明,片段命中物可以进一步优化以提供选择性配体,这些配体可影响迄今缺乏化学探针的蛋白质的活性。我们还将基于片段的化学蛋白质组学与表型筛选相结合,以鉴定通过与特征不明确的膜蛋白PGRMC2相互作用促进脂肪细胞分化的小分子。因此,在人类细胞中进行基于片段的筛选可提供广泛的全蛋白质组蛋白质可配体性图谱,并有助于协同发现生物活性小分子及其分子靶标。

相似文献

1
Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
Cell. 2017 Jan 26;168(3):527-541.e29. doi: 10.1016/j.cell.2016.12.029. Epub 2017 Jan 19.
2
Establish an automated flow injection ESI-MS method for the screening of fragment based libraries: Application to Hsp90.
Eur J Pharm Sci. 2015 Aug 30;76:83-94. doi: 10.1016/j.ejps.2015.05.001. Epub 2015 May 4.
3
Mass spectrometry for fragment screening.
Essays Biochem. 2017 Nov 8;61(5):465-473. doi: 10.1042/EBC20170071.
4
Discovery of Modulators of Adipocyte Physiology Using Fully Functionalized Fragments.
Methods Mol Biol. 2018;1787:115-127. doi: 10.1007/978-1-4939-7847-2_9.
5
Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells.
Science. 2024 Apr 26;384(6694):eadk5864. doi: 10.1126/science.adk5864.
6
NMR spectroscopy: the swiss army knife of drug discovery.
J Biomol NMR. 2020 Nov;74(10-11):509-519. doi: 10.1007/s10858-020-00330-0. Epub 2020 Jul 2.
7
Biophysical screening for the discovery of small-molecule ligands.
Methods Mol Biol. 2013;1008:357-88. doi: 10.1007/978-1-62703-398-5_13.
8
Identification and optimization of PDE10A inhibitors using fragment-based screening by nanocalorimetry and X-ray crystallography.
J Biomol Screen. 2014 Apr;19(4):497-507. doi: 10.1177/1087057113516493. Epub 2013 Dec 27.
9
Efficiency of hit generation and structural characterization in fragment-based ligand discovery.
Curr Opin Chem Biol. 2011 Aug;15(4):482-8. doi: 10.1016/j.cbpa.2011.06.008. Epub 2011 Jul 1.
10
Recent progress in fragment-based lead discovery.
Curr Opin Pharmacol. 2009 Oct;9(5):615-21. doi: 10.1016/j.coph.2009.04.009. Epub 2009 May 27.

引用本文的文献

6
Development of Second-Generation Acyl Silane Photoaffinity Probes for Cellular Chemoproteomic Profiling.
bioRxiv. 2025 May 28:2025.05.24.655972. doi: 10.1101/2025.05.24.655972.
8
Ligand-binding pockets in RNA and where to find them.
Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422346122. doi: 10.1073/pnas.2422346122. Epub 2025 Apr 22.
9
Ligand-binding pockets in RNA, and where to find them.
bioRxiv. 2025 Mar 15:2025.03.13.643147. doi: 10.1101/2025.03.13.643147.

本文引用的文献

1
A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase.
Biochemistry. 2016 Sep 20;55(37):5204-17. doi: 10.1021/acs.biochem.6b00756. Epub 2016 Sep 9.
2
Proteome-wide covalent ligand discovery in native biological systems.
Nature. 2016 Jun 23;534(7608):570-4. doi: 10.1038/nature18002. Epub 2016 Jun 15.
4
The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes.
J Biol Chem. 2015 Nov 13;290(46):27524-31. doi: 10.1074/jbc.M115.673210. Epub 2015 Sep 25.
6
A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.
Cell. 2015 Jun 18;161(7):1668-80. doi: 10.1016/j.cell.2015.05.045.
7
Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2585-94. doi: 10.1073/pnas.1501567112. Epub 2015 Apr 27.
8
Tracking cancer drugs in living cells by thermal profiling of the proteome.
Science. 2014 Oct 3;346(6205):1255784. doi: 10.1126/science.1255784. Epub 2014 Oct 2.
9
Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells.
J Am Chem Soc. 2014 Jul 30;136(30):10777-82. doi: 10.1021/ja505517t. Epub 2014 Jul 21.
10
Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis.
Diabetologia. 2014 Sep;57(9):1957-67. doi: 10.1007/s00125-014-3298-5. Epub 2014 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验