Suppr超能文献

分析呼吸信号和吞咽序列局部性以监测固体食物摄入情况。

Analyzing Breathing Signals and Swallow Sequence Locality for Solid Food Intake Monitoring.

作者信息

Dong Bo, Biswas Subir

机构信息

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA.

出版信息

J Med Biol Eng. 2016;36(6):765-775. doi: 10.1007/s40846-016-0181-5. Epub 2016 Dec 9.

Abstract

Self-reported questionnaires are widely used by researchers for analyzing the dietary behavior of overweight and obese individuals. It has been established that questionnaire-based data collection often suffers from high errors due to its reporting subjectivity. Automatic swallow detection, as an alternative to questionnaires, is proposed in this paper to avoid such subjectivity. Existing approaches for swallow detection include the use of surface electromyography and sound to detect individual swallowing events. Many of these methods are generally too complicated and cumbersome for daily usage in a free-living setting. This paper presents a wearable solid food intake monitoring system that analyzes human breathing signals and swallow sequence locality. Food intake is identified by detecting swallow events. The system works based on a key observation that the otherwise continuous breathing process is interrupted by a short apnea during swallowing. A support vector machine (SVM) is first used for detecting such apneas in breathing signals collected from a wearable chest belt. The resulting swallow detection is then refined using a hidden Markov model (HMM)-based mechanism that leverages the known temporal locality in the sequence of human swallows. Temporal locality is based on the fact that people usually do not swallow in consecutive breathing cycles. The HMM model is used to model such temporal locality in order to refine the SVM results. Experiments were carried out on six healthy subjects wearing the proposed system. The proposed SVM method achieved up to 61% precision and 91% recall on average. Utilization of HMM in addition to SVM improved the overall performance to up to 75% precision and 86% recall.

摘要

研究人员广泛使用自我报告问卷来分析超重和肥胖个体的饮食行为。已经证实,基于问卷的数据收集由于其报告的主观性,常常存在较高误差。本文提出了一种自动吞咽检测方法,作为问卷的替代方案,以避免这种主观性。现有的吞咽检测方法包括使用表面肌电图和声音来检测个体吞咽事件。这些方法中的许多在自由生活环境中的日常使用中通常过于复杂和繁琐。本文提出了一种可穿戴的固体食物摄入监测系统,该系统分析人类呼吸信号和吞咽序列局部性。通过检测吞咽事件来识别食物摄入。该系统基于一个关键观察结果工作,即在吞咽过程中,原本连续的呼吸过程会被短暂的呼吸暂停打断。首先使用支持向量机(SVM)来检测从可穿戴胸带收集的呼吸信号中的此类呼吸暂停。然后使用基于隐马尔可夫模型(HMM)的机制对得到的吞咽检测结果进行优化,该机制利用了人类吞咽序列中已知的时间局部性。时间局部性基于这样一个事实,即人们通常不会在连续的呼吸周期中吞咽。HMM模型用于对这种时间局部性进行建模,以优化SVM的结果。对六名佩戴所提出系统的健康受试者进行了实验。所提出的SVM方法平均实现了高达61%的精度和91%的召回率。除了SVM之外,使用HMM将整体性能提高到了高达75%的精度和86%的召回率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc6/5216113/ea9cd9a83d06/40846_2016_181_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验