Suppr超能文献

通过在自动冠状动脉管腔分割中考虑部分容积建模来改善基于CT血管造影(CCTA)的病变血流动力学意义评估。

Improving CCTA-based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation.

作者信息

Freiman Moti, Nickisch Hannes, Prevrhal Sven, Schmitt Holger, Vembar Mani, Maurovich-Horvat Pál, Donnelly Patrick, Goshen Liran

机构信息

Philips Medical Systems Technologies Ltd., Advanced Technologies Center, Haifa, 3100202, Israel.

出版信息

Med Phys. 2017 Mar;44(3):1040-1049. doi: 10.1002/mp.12121.

Abstract

PURPOSE

The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm that is used to determine the hemodynamic significance of a coronary artery stenosis from coronary computed tomography angiography (CCTA).

MATERIALS AND METHODS

Two sets of data were used in our work: (a) multivendor CCTA datasets of 18 subjects from the MICCAI 2012 challenge with automatically generated centerlines and 3 reference segmentations of 78 coronary segments and (b) additional CCTA datasets of 97 subjects with 132 coronary lesions that had invasive reference standard FFR measurements. We extracted the coronary artery centerlines for the 97 datasets by an automated software program followed by manual correction if required. An automatic machine-learning-based algorithm segmented the coronary tree with and without accounting for the PVE. We obtained CCTA-based FFR measurements using a flow simulation in the coronary trees that were generated by the automatic algorithm with and without accounting for PVE. We assessed the potential added value of PVE integration as a part of the automatic coronary lumen segmentation algorithm by means of segmentation accuracy using the MICCAI 2012 challenge framework and by means of flow simulation overall accuracy, sensitivity, specificity, negative and positive predictive values, and the receiver operated characteristic (ROC) area under the curve. We also evaluated the potential benefit of accounting for PVE in automatic segmentation for flow simulation for lesions that were diagnosed as obstructive based on CCTA which could have indicated a need for an invasive exam and revascularization.

RESULTS

Our segmentation algorithm improves the maximal surface distance error by ~39% compared to previously published method on the 18 datasets from the MICCAI 2012 challenge with comparable Dice and mean surface distance. Results with and without accounting for PVE were comparable. In contrast, integrating PVE analysis into an automatic coronary lumen segmentation algorithm improved the flow simulation specificity from 0.6 to 0.68 with the same sensitivity of 0.83. Also, accounting for PVE improved the area under the ROC curve for detecting hemodynamically significant CAD from 0.76 to 0.8 compared to automatic segmentation without PVE analysis with invasive FFR threshold of 0.8 as the reference standard. Accounting for PVE in flow simulation to support the detection of hemodynamic significant disease in CCTA-based obstructive lesions improved specificity from 0.51 to 0.73 with same sensitivity of 0.83 and the area under the curve from 0.69 to 0.79. The improvement in the AUC was statistically significant (N = 76, Delong's test, P = 0.012).

CONCLUSION

Accounting for the partial volume effects in automatic coronary lumen segmentation algorithms has the potential to improve the accuracy of CCTA-based hemodynamic assessment of coronary artery lesions.

摘要

目的

本研究的目的是评估在用于从冠状动脉计算机断层扫描血管造影(CCTA)确定冠状动脉狭窄血流动力学意义的自动冠状动脉管腔分割算法中,考虑部分容积效应(PVE)的潜在附加益处。

材料与方法

我们的研究使用了两组数据:(a)来自2012年医学图像计算与计算机辅助干预国际会议(MICCAI)挑战赛的18名受试者的多厂商CCTA数据集,其中自动生成了中心线以及78个冠状动脉节段的3种参考分割;(b)另外97名受试者的CCTA数据集,这些受试者有132个冠状动脉病变,并进行了有创参考标准血流储备分数(FFR)测量。我们通过自动软件程序为97个数据集提取冠状动脉中心线,必要时进行手动校正。一种基于机器学习的自动算法在考虑和不考虑PVE的情况下对冠状动脉树进行分割。我们在由自动算法生成的冠状动脉树中,通过血流模拟获得基于CCTA的FFR测量值,模拟过程分别考虑和不考虑PVE。我们通过使用2012年MICCAI挑战赛框架的分割准确性以及血流模拟的总体准确性、敏感性、特异性、阴性和阳性预测值以及曲线下的受试者操作特征(ROC)面积,评估了将PVE整合作为自动冠状动脉管腔分割算法一部分的潜在附加价值。我们还评估了在基于CCTA被诊断为阻塞性病变的血流模拟自动分割中考虑PVE的潜在益处,这些病变可能表明需要进行有创检查和血运重建。

结果

与之前在2012年MICCAI挑战赛的18个数据集上发表的方法相比,我们的分割算法在具有可比的骰子系数和平均表面距离的情况下,将最大表面距离误差提高了约39%。考虑和不考虑PVE的结果具有可比性。相比之下,将PVE分析整合到自动冠状动脉管腔分割算法中,在相同敏感性为0.83的情况下,将血流模拟特异性从0.6提高到了0.68。此外,与不进行PVE分析的自动分割相比,考虑PVE将检测血流动力学显著冠心病的ROC曲线下面积从0.76提高到了0.8,以有创FFR阈值0.8作为参考标准。在基于CCTA的阻塞性病变的血流模拟中考虑PVE以支持检测血流动力学显著疾病,在相同敏感性为0.83的情况下,将特异性从0.51提高到了0.73,曲线下面积从0.69提高到了0.79。AUC的改善具有统计学意义(N = 76,德龙检验,P = 0.012)。

结论

在自动冠状动脉管腔分割算法中考虑部分容积效应有可能提高基于CCTA的冠状动脉病变血流动力学评估的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验