Suppr超能文献

基于声学多特征分析的上气道鼾声激励位置分类

Classification of the Excitation Location of Snore Sounds in the Upper Airway by Acoustic Multifeature Analysis.

作者信息

Qian Kun, Janott Christoph, Pandit Vedhas, Zhang Zixing, Heiser Clemens, Hohenhorst Winfried, Herzog Michael, Hemmert Werner, Schuller Bjorn

机构信息

Machine Intelligence and Signal Processing Group, MMK, Technische Universität München, Munich, Germany.

Institute for Medical EngineeringTechnische Universität München.

出版信息

IEEE Trans Biomed Eng. 2017 Aug;64(8):1731-1741. doi: 10.1109/TBME.2016.2619675. Epub 2016 Oct 21.

Abstract

OBJECTIVE

Obstructive sleep apnea (OSA) is a serious chronic disease and a risk factor for cardiovascular diseases. Snoring is a typical symptom of OSA patients. Knowledge of the origin of obstruction and vibration within the upper airways is essential for a targeted surgical approach. Aim of this paper is to systematically compare different acoustic features, and classifiers for their performance in the classification of the excitation location of snore sounds.

METHODS

Snore sounds from 40 male patients have been recorded during drug-induced sleep endoscopy, and categorized by Ear, Nose & Throat (ENT) experts. Crest Factor, fundamental frequency, spectral frequency features, subband energy ratio, mel-scale frequency cepstral coefficients, empirical mode decomposition-based features, and wavelet energy features have been extracted and fed into several classifiers. Using the ReliefF algorithm, features have been ranked and the selected feature subsets have been tested with the same classifiers.

RESULTS

A fusion of all features after a ReliefF feature selection step in combination with a random forests classifier showed the best classification results of 78% unweighted average recall by subject independent validation.

CONCLUSION

Multifeature analysis is a promising means to help identify the anatomical mechanisms of snore sound generation in individual subjects.

SIGNIFICANCE

This paper describes a novel approach for the machine-based multifeature classification of the excitation location of snore sounds in the upper airway.

摘要

目的

阻塞性睡眠呼吸暂停(OSA)是一种严重的慢性疾病,也是心血管疾病的危险因素。打鼾是OSA患者的典型症状。了解上气道内阻塞和振动的起源对于有针对性的手术方法至关重要。本文旨在系统比较不同的声学特征及其分类器在鼾声激励位置分类中的性能。

方法

在药物诱导睡眠内镜检查期间记录了40名男性患者的鼾声,并由耳鼻喉科(ENT)专家进行分类。提取了波峰因数、基频、频谱频率特征、子带能量比、梅尔频率倒谱系数、基于经验模式分解的特征和小波能量特征,并将其输入到几个分类器中。使用ReliefF算法对特征进行排序,并使用相同的分类器对所选特征子集进行测试。

结果

在ReliefF特征选择步骤后,将所有特征与随机森林分类器相结合,通过受试者独立验证显示出最佳分类结果,未加权平均召回率为78%。

结论

多特征分析是一种很有前景的方法,有助于识别个体受试者鼾声产生的解剖机制。

意义

本文描述了一种基于机器的对上气道鼾声激励位置进行多特征分类的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验