Suppr超能文献

基于小波特征的鼾声分类方法研究。

A Bag of Wavelet Features for Snore Sound Classification.

机构信息

Machine Intelligence & Signal Processing Group, MMK, Technische Universität München, Arcisstr. 21, 80333, Munich, Germany.

ZD.B Chair of Embedded Intelligence for Health Care & Wellbeing, Universität Augsburg, Eichleitnerstr. 30, 86159, Augsburg, Germany.

出版信息

Ann Biomed Eng. 2019 Apr;47(4):1000-1011. doi: 10.1007/s10439-019-02217-0. Epub 2019 Jan 30.

Abstract

Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject's upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Naïve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly ([Formula: see text] one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH COMPARE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the OPENSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification.

摘要

鼾声(SnS)分类可以支持针对睡眠相关呼吸障碍的靶向手术方法。使用机器听力方法,我们旨在找到受试者上呼吸道阻塞和振动的位置。在以前的研究中,已经证明小波特征在识别 SnS 方面非常有效。在这项工作中,我们使用音频词汇袋方法来增强从 SnS 数据中提取的低级小波特征。基于其在初步实验中的优势,我们选择朴素贝叶斯模型作为分类器。我们使用在三个医疗中心进行的药物诱导睡眠内窥镜检查中从 219 个独立受试者收集的 SnS 数据。我们提出的方法的未加权平均召回率为 69.4%,明显([公式:见文本] 单侧 z 检验)优于官方基线(58.5%),并击败了 INTERSPEECH COMPARE 挑战赛 2017 打鼾子挑战赛的获胜者(64.2%)。此外,还比较了传统使用的特征,如共振峰、梅尔尺度频率倒谱系数、子带能量比、频谱频率特征以及 OPENSMILE 工具包提取的特征与我们提出的特征集。实验结果证明了我们提出的方法在 SnS 分类中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验