IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):3061-3073. doi: 10.1109/TNNLS.2016.2614878. Epub 2016 Oct 13.
In this paper, a novel formulation for nonlinear model predictive control (MPC) has been proposed incorporating the extended Kalman filter (EKF) control concept using a purely data-driven artificial neural network (ANN) model based on measurements for supervisory control. The proposed scheme consists of two modules focusing on online parameter estimation based on past measurements and control estimation over control horizon based on minimizing the deviation of model output predictions from set points along the prediction horizon. An industrial case study for temperature control of a multiproduct semibatch polymerization reactor posed as a challenge problem has been considered as a test bed to apply the proposed ANN-EKFMPC strategy at supervisory level as a cascade control configuration along with proportional integral controller [ANN-EKFMPC with PI (ANN-EKFMPC-PI)]. The proposed approach is formulated incorporating all aspects of MPC including move suppression factor for control effort minimization and constraint-handling capability including terminal constraints. The nominal stability analysis and offset-free tracking capabilities of the proposed controller are proved. Its performance is evaluated by comparison with a standard MPC-based cascade control approach using the same adaptive ANN model. The ANN-EKFMPC-PI control configuration has shown better controller performance in terms of temperature tracking, smoother input profiles, as well as constraint-handling ability compared with the ANN-MPC with PI approach for two products in summer and winter. The proposed scheme is found to be versatile although it is based on a purely data-driven model with online parameter estimation.
本文提出了一种新的非线性模型预测控制(MPC)公式,该公式结合了扩展卡尔曼滤波器(EKF)控制概念,使用基于测量值的纯数据驱动人工神经网络(ANN)模型进行监督控制。所提出的方案由两个模块组成,重点是基于过去测量值的在线参数估计和基于控制范围的控制估计,通过最小化模型输出预测值与设定点沿预测范围的偏差来实现。考虑到一个多产品半间歇聚合反应器的温度控制作为一个挑战性问题的工业案例研究,作为一个测试平台,将所提出的 ANN-EKFMPC 策略应用于监督级,作为与比例积分控制器(ANN-EKFMPC-PI)的级联控制配置。所提出的方法是结合 MPC 的各个方面来制定的,包括抑制控制努力最小化的移动因素和包括终端约束在内的约束处理能力。证明了所提出控制器的标称稳定性分析和无偏跟踪能力。通过与使用相同自适应 ANN 模型的标准基于 MPC 的级联控制方法进行比较,评估了其性能。与基于 ANN-MPC 的 PI 方法相比,ANN-EKFMPC-PI 控制配置在夏季和冬季的两种产品中,在温度跟踪、输入曲线更平滑以及约束处理能力方面表现出更好的控制器性能。尽管所提出的方案基于具有在线参数估计的纯数据驱动模型,但它被证明是多功能的。