Suppr超能文献

四面体网格的快速精确纤维曲面。

Fast and Exact Fiber Surfaces for Tetrahedral Meshes.

出版信息

IEEE Trans Vis Comput Graph. 2017 Jul;23(7):1782-1795. doi: 10.1109/TVCG.2016.2570215. Epub 2016 May 18.

Abstract

Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.

摘要

等密度面是分析和可视化体数据标量场的基本几何对象。最近的工作将它们推广到了纤维曲面,即范围空间中多边形的原像的双变量体数据场。然而,现有的计算算法是近似的,并且仅限于封闭的多边形。此外,它的运行时性能不允许在用户编辑多边形时立即更新纤维曲面。总体而言,这些限制阻止了对纤维曲面空间的可靠和交互式探索。本文介绍了在四面体网格中精确计算纤维曲面的第一个算法。它假设对输入多边形的拓扑没有限制,处理退化情况,并更好地捕捉由多边形弯曲引起的尖锐特征。该算法还允许在输出表面上可视化单个纤维,更好地说明它们与范围空间中数据特征的关系。为了实现真正的交互式探索会话,我们进一步提高了该算法的运行时性能。特别是,我们表明它可以轻松地并行化,并且它的规模几乎与核心数量呈线性关系。此外,我们研究了几何域和范围空间中的加速数据结构,并展示了如何将用于等密度面提取的区间树推广到纤维面提取。实验表明,我们的算法在准确性和运行时间方面都优于以前的工作,最快可以达到两个数量级的加速。这种改进使交互式编辑范围多边形和即时更新纤维曲面成为可能,以便进行探索。作为附加材料,提供了一个基于 VTK 的参考实现,以重现我们的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验