Suppr超能文献

基于相关噪声扩展矩阵变量幂指数分布的鲁棒图像回归。

Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2168-2182. doi: 10.1109/TNNLS.2016.2573644. Epub 2016 Jun 23.

Abstract

Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

摘要

处理部分遮挡或光照是图像表示和分类中最具挑战性的问题之一。在这个问题中,描述误差的特征起着至关重要的作用。在大多数当前的方法中,需要将误差矩阵拉伸成一个向量,并且假设每个元素都是独立损坏的。这忽略了误差元素之间的依赖性。在本文中,假设由部分遮挡或光照变化引起的误差图像是一个随机矩阵变量,并遵循扩展矩阵变量幂指数分布。这种分布具有重尾区域,可以用来描述不独立的 l×m 维观测矩阵模式。本文揭示了所提出分布的本质:它实际上减轻了误差矩阵 E 中像素之间的相关性,并使 E 近似高斯分布。基于该分布,我们推导出了一个基于 Schatten p -范数的矩阵回归模型,并采用 L 正则化。应用交替方向乘子法来求解这个模型。为了在算法的每一步得到闭式解,引入了两个奇异值函数阈值算子。此外,在分类器的设计中,扩展的 Schatten p -范数用于描述测试样本与类之间的距离。通过对结构噪声的图像重建和分类进行广泛的实验,结果表明,所提出的算法比一些现有的基于回归的方法更稳健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验