Suppr超能文献

通过一组独特的特征和基于树的回归器来估计模型的准确性。

Estimation of model accuracy by a unique set of features and tree-based regressor.

机构信息

Department of Computer Science, Ben Gurion University, Be'er Sheva, Israel.

出版信息

Sci Rep. 2022 Aug 18;12(1):14074. doi: 10.1038/s41598-022-17097-z.

Abstract

Computationally generated models of protein structures bridge the gap between the practically negligible price tag of sequencing and the high cost of experimental structure determination. By providing a low-cost (and often free) partial alternative to experimentally determined structures, these models help biologists design and interpret their experiments. Obviously, the more accurate the models the more useful they are. However, methods for protein structure prediction generate many structural models of various qualities, necessitating means for the estimation of their accuracy. In this work we present MESHI_consensus, a new method for the estimation of model accuracy. The method uses a tree-based regressor and a set of structural, target-based, and consensus-based features. The new method achieved high performance in the EMA (Estimation of Model Accuracy) track of the recent CASP14 community-wide experiment ( https://predictioncenter.org/casp14/index.cgi ). The tertiary structure prediction track of that experiment revealed an unprecedented leap in prediction performance by a single prediction group/method, namely AlphaFold2. This achievement would inevitably have a profound impact on the field of protein structure prediction, including the accuracy estimation sub-task. We conclude this manuscript with some speculations regarding the future role of accuracy estimation in a new era of accurate protein structure prediction.

摘要

计算生成的蛋白质结构模型弥补了测序实际成本低与实验结构测定成本高之间的差距。通过为实验确定的结构提供低成本(且通常是免费的)部分替代方案,这些模型帮助生物学家设计和解释他们的实验。显然,模型越准确,它们就越有用。然而,蛋白质结构预测方法会生成各种质量的许多结构模型,因此需要估计其准确性的方法。在这项工作中,我们提出了 MESHI_consensus,这是一种估计模型准确性的新方法。该方法使用基于树的回归器和一组基于结构、基于目标和基于共识的特征。该新方法在最近的 CASP14 全社区实验(https://predictioncenter.org/casp14/index.cgi)的 EMA(模型准确性估计)轨道中表现出了很高的性能。该实验的三级结构预测轨道揭示了单个预测组/方法(即 AlphaFold2)的预测性能的空前飞跃。这一成就将不可避免地对蛋白质结构预测领域产生深远影响,包括准确性估计子任务。我们在本文的结论部分对在准确蛋白质结构预测的新时代,准确性估计的未来作用进行了一些推测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684b/9388490/268372d302c2/41598_2022_17097_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验