IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2165-2178. doi: 10.1109/TVCG.2016.2607204. Epub 2016 Sep 8.
Data ensembles are often used to infer statistics to be used for a summary display of an uncertain prediction. In a spatial context, these summary displays have the drawback that when uncertainty is encoded via a spatial spread, display glyph area increases in size with prediction uncertainty. This increase can be easily confounded with an increase in the size, strength or other attribute of the phenomenon being presented. We argue that by directly displaying a carefully chosen subset of a prediction ensemble, so that uncertainty is conveyed implicitly, such misinterpretations can be avoided. Since such a display does not require uncertainty annotation, an information channel remains available for encoding additional information about the prediction. We demonstrate these points in the context of hurricane prediction visualizations, showing how we avoid occlusion of selected ensemble elements while preserving the spatial statistics of the original ensemble, and how an explicit encoding of uncertainty can also be constructed from such a selection. We conclude with the results of a cognitive experiment demonstrating that the approach can be used to construct storm prediction displays that significantly reduce the confounding of uncertainty with storm size, and thus improve viewers' ability to estimate potential for storm damage.
数据集成通常用于推断统计数据,以便用于不确定预测的摘要显示。在空间背景下,这些摘要显示的缺点是,当不确定性通过空间传播进行编码时,显示图符区域会随着预测不确定性的增加而增大。这种增加很容易与呈现的现象的大小、强度或其他属性的增加混淆。我们认为,通过直接显示预测集成的精心选择的子集,从而隐含地传达不确定性,可以避免这种误解。由于这种显示不需要不确定性注释,因此仍然可以使用信息通道来编码有关预测的其他信息。我们在飓风预测可视化的上下文中演示了这些要点,展示了如何在保留原始集成的空间统计信息的同时避免选择的集成元素被遮挡,以及如何从这种选择构建不确定性的显式编码。我们最后进行了认知实验的结果,表明该方法可用于构建风暴预测显示,可显著减少不确定性与风暴大小的混淆,从而提高观众估计风暴破坏潜力的能力。