Suppr超能文献

不同图形显示对不确定性下非专业人士决策的影响。

The influence of different graphical displays on nonexpert decision making under uncertainty.

作者信息

Padilla Lace M, Hansen Grace, Ruginski Ian T, Kramer Heidi S, Thompson William B, Creem-Regehr Sarah H

机构信息

Department of Psychology.

Section on Integrative Neuroimaging, Clinical Brain Disorders Branch, National Institutes of Health.

出版信息

J Exp Psychol Appl. 2015 Mar;21(1):37-46. doi: 10.1037/xap0000037. Epub 2014 Dec 1.

Abstract

Understanding how people interpret and use visually presented uncertainty data is an important yet seldom studied aspect of data visualization applications. Current approaches in visualization often display uncertainty as an additional data attribute without a well-defined context. Our goal was to test whether different graphical displays (glyphs) would influence a decision about which of 2 weather forecasts was a more accurate predictor of an uncertain temperature forecast value. We used a statistical inference task based on fictional univariate normal distributions, each characterized by a mean and standard deviation. Participants viewed 1 of 5 different glyph types representing 2 weather forecast distributions. Three of these used variations in spatial encoding to communicate the distributions and the other 2 used nonspatial encoding (brightness or color). Four distribution pairs were created with different relative standard deviations (uncertainty of the forecasts). We found that there was a difference in how decisions were made with spatial versus nonspatial glyphs, but no difference among the spatial glyphs themselves. Furthermore, the effect of different glyph types changed as a function of the variability of the distributions. The results are discussed in the context of how visualizations might improve decision making under uncertainty.

摘要

了解人们如何解读和使用视觉呈现的不确定性数据是数据可视化应用中一个重要但很少被研究的方面。当前的可视化方法通常将不确定性作为一个额外的数据属性来显示,而没有明确的上下文。我们的目标是测试不同的图形显示(符号)是否会影响关于两个天气预报中哪一个是不确定温度预测值更准确预测器的决策。我们使用了一个基于虚构单变量正态分布的统计推断任务,每个分布由均值和标准差来表征。参与者查看了代表两个天气预报分布的五种不同符号类型中的一种。其中三种使用空间编码的变化来传达分布,另外两种使用非空间编码(亮度或颜色)。创建了四对具有不同相对标准差(预测的不确定性)的分布。我们发现,使用空间符号和非空间符号进行决策的方式存在差异,但空间符号本身之间没有差异。此外,不同符号类型的效果会随着分布的变异性而变化。我们将在可视化如何改善不确定性下的决策制定的背景下讨论这些结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验