Peng Houwen, Li Bing, Ling Haibin, Hu Weiming, Xiong Weihua, Maybank Stephen J
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):818-832. doi: 10.1109/TPAMI.2016.2562626. Epub 2016 May 4.
Low-rank recovery models have shown potential for salient object detection, where a matrix is decomposed into a low-rank matrix representing image background and a sparse matrix identifying salient objects. Two deficiencies, however, still exist. First, previous work typically assumes the elements in the sparse matrix are mutually independent, ignoring the spatial and pattern relations of image regions. Second, when the low-rank and sparse matrices are relatively coherent, e.g., when there are similarities between the salient objects and background or when the background is complicated, it is difficult for previous models to disentangle them. To address these problems, we propose a novel structured matrix decomposition model with two structural regularizations: (1) a tree-structured sparsity-inducing regularization that captures the image structure and enforces patches from the same object to have similar saliency values, and (2) a Laplacian regularization that enlarges the gaps between salient objects and the background in feature space. Furthermore, high-level priors are integrated to guide the matrix decomposition and boost the detection. We evaluate our model for salient object detection on five challenging datasets including single object, multiple objects and complex scene images, and show competitive results as compared with 24 state-of-the-art methods in terms of seven performance metrics.
低秩恢复模型已在显著目标检测中展现出潜力,其中一个矩阵被分解为一个表示图像背景的低秩矩阵和一个识别显著目标的稀疏矩阵。然而,仍然存在两个不足之处。首先,先前的工作通常假设稀疏矩阵中的元素相互独立,而忽略了图像区域的空间和模式关系。其次,当低秩矩阵和稀疏矩阵相对相干时,例如当显著目标与背景之间存在相似性或者背景复杂时,先前的模型很难将它们区分开来。为了解决这些问题,我们提出了一种具有两种结构正则化的新型结构化矩阵分解模型:(1)一种树形结构的稀疏性诱导正则化,它捕捉图像结构并强制来自同一目标的补丁具有相似的显著性值;(2)一种拉普拉斯正则化,它扩大了显著目标与背景在特征空间中的差距。此外,还集成了高级先验知识来指导矩阵分解并增强检测效果。我们在包括单目标、多目标和复杂场景图像在内的五个具有挑战性的数据集上评估了我们的显著目标检测模型,并在七个性能指标方面与24种最新方法相比显示出具有竞争力的结果。