Suppr超能文献

基于中智集理论优化特征计算的显著目标检测

Salient Object Detection Based on Optimization of Feature Computation by Neutrosophic Set Theory.

作者信息

Song Sensen, Li Yue, Jia Zhenhong, Shi Fei

机构信息

Key Laboratory of Signal Detection and Processing, College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China.

出版信息

Sensors (Basel). 2023 Oct 10;23(20):8348. doi: 10.3390/s23208348.

Abstract

In recent saliency detection research, too many or too few image features are used in the algorithm, and the processing of saliency map details is not satisfactory, resulting in significant degradation of the salient object detection result. To overcome the above deficiencies and achieve better object detection results, we propose a salient object detection method based on feature optimization by neutrosophic set (NS) theory in this paper. First, prior object knowledge is built using foreground and background models, which include pixel-wise and super-pixel cues. Simultaneously, the feature maps are selected and extracted for feature computation, allowing the object and background features of the image to be separated as much as possible. Second, the salient object is obtained by fusing the features decomposed by the low-rank matrix recovery model with the object prior knowledge. Finally, for salient object detection, we present a novel mathematical description of neutrosophic set theory. To reduce the uncertainty of the obtained saliency map and then obtain good saliency detection results, the new NS theory is proposed. Extensive experiments on five public datasets demonstrate that the results are competitive and superior to previous state-of-the-art methods.

摘要

在最近的显著性检测研究中,算法中使用的图像特征过多或过少,并且显著性图细节的处理效果不尽人意,导致显著目标检测结果大幅退化。为了克服上述不足并获得更好的目标检测结果,本文提出一种基于中智集(NS)理论特征优化的显著目标检测方法。首先,利用前景和背景模型构建先验目标知识,其中包括逐像素和超像素线索。同时,选择并提取特征图进行特征计算,以使图像的目标和背景特征尽可能分离。其次,通过将低秩矩阵恢复模型分解的特征与目标先验知识相融合来获得显著目标。最后,对于显著目标检测,我们给出了中智集理论的一种新颖数学描述。为了降低所获得显著性图的不确定性,进而获得良好的显著性检测结果,提出了新的NS理论。在五个公共数据集上进行的大量实验表明,结果具有竞争力且优于先前的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/955b/10610941/f14732ee887f/sensors-23-08348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验