Suppr超能文献

高效蛋白质相互作用预测框架。

Highly Efficient Framework for Predicting Interactions Between Proteins.

出版信息

IEEE Trans Cybern. 2017 Mar;47(3):731-743. doi: 10.1109/TCYB.2016.2524994. Epub 2016 Mar 30.

Abstract

Protein-protein interactions (PPIs) play a central role in many biological processes. Although a large amount of human PPI data has been generated by high-throughput experimental techniques, they are very limited compared to the estimated 130 000 protein interactions in humans. Hence, automatic methods for human PPI-detection are highly desired. This work proposes a novel framework, i.e., Low-rank approximation-kernel Extreme Learning Machine (LELM), for detecting human PPI from a protein's primary sequences automatically. It has three main steps: 1) mapping each protein sequence into a matrix built on all kinds of adjacent amino acids; 2) applying the low-rank approximation model to the obtained matrix to solve its lowest rank representation, which reflects its true subspace structures; and 3) utilizing a powerful kernel extreme learning machine to predict the probability for PPI based on this lowest rank representation. Experimental results on a large-scale human PPI dataset demonstrate that the proposed LELM has significant advantages in accuracy and efficiency over the state-of-art approaches. Hence, this work establishes a new and effective way for the automatic detection of PPI.

摘要

蛋白质-蛋白质相互作用(PPIs)在许多生物过程中起着核心作用。尽管高通量实验技术已经产生了大量的人类 PPI 数据,但与人类估计的 130000 个蛋白质相互作用相比,这些数据非常有限。因此,人们非常希望能够自动检测人类 PPI。这项工作提出了一种新的框架,即低秩逼近核极限学习机(LELM),用于从蛋白质的一级序列中自动检测人类 PPI。它有三个主要步骤:1)将每个蛋白质序列映射到一个基于各种相邻氨基酸构建的矩阵上;2)应用低秩逼近模型对获得的矩阵进行求解,以获得其最低秩表示,从而反映其真实的子空间结构;3)利用强大的核极限学习机基于此最低秩表示来预测 PPI 的概率。在一个大规模的人类 PPI 数据集上的实验结果表明,与最先进的方法相比,所提出的 LELM 在准确性和效率方面具有显著的优势。因此,这项工作为 PPI 的自动检测建立了一种新的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验