Suppr超能文献

多指数重组差分进化算法。

Multiple Exponential Recombination for Differential Evolution.

出版信息

IEEE Trans Cybern. 2017 Apr;47(4):995-1006. doi: 10.1109/TCYB.2016.2536167. Epub 2016 Mar 15.

Abstract

Differential evolution (DE) is a popular population-based metaheuristic approach for solving numerical optimization problems. In recent years, considerable research has been devoted to the development of new mutation strategies and parameter adaptation mechanisms. However, as one of the basic algorithmic components of DE, the crossover operation has not been sufficiently examined in existing works. Most of the main DE variants solely employ traditional binomial recombination, which has intrinsic limitations in handling dependent subsets of variables. To fill this research niche, we propose a multiple exponential recombination that inherits all the main advantages of existing crossover operators while possessing a stronger ability in managing dependent variables. Multiple segments of the involved solutions will be exchanged during the proposed operator. The properties of the new scheme are examined both theoretically and empirically. Experimental results demonstrate the robustness of the proposed operator in solving problems with unknown variable interrelations.

摘要

差分进化(DE)是一种流行的基于种群的元启发式方法,用于解决数值优化问题。近年来,人们致力于开发新的变异策略和参数自适应机制。然而,作为 DE 的基本算法组件之一,交叉操作在现有工作中并没有得到充分的研究。大多数主要的 DE 变体仅采用传统的二进制重组,这种重组在处理变量的相关子集时存在内在的局限性。为了填补这一研究空白,我们提出了一种多指数重组,它继承了现有交叉算子的所有主要优点,同时在处理相关变量方面具有更强的能力。在提议的算子中,将交换涉及的解决方案的多个片段。从理论和实验两方面研究了新方案的性质。实验结果表明,该算子在解决具有未知变量相互关系的问题时具有很强的稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验