IEEE Trans Image Process. 2016 Jun;25(6):2920-2930. doi: 10.1109/TIP.2016.2556582. Epub 2016 Apr 20.
We consider the problem of recovering 2D block-sparse signals with unknown cluster patterns. The 2D block-sparse patterns arise naturally in many practical applications, such as foreground detection and inverse synthetic aperture radar imaging. To exploit the underlying block-sparse structure, we propose a 2D pattern-coupled hierarchical Gaussian prior model. The proposed pattern-coupled hierarchical Gaussian prior model imposes a soft coupling mechanism among neighboring coefficients through their shared hyperparameters. This coupling mechanism enables effective and automatic learning of the underlying irregular cluster patterns, without requiring any a priori knowledge of the block partition of sparse signals. We develop a computationally efficient Bayesian inference method, which integrates the generalized approximate message passing technique with the proposed prior model. Simulation results show that the proposed method offers competitive recovery performance for a range of 2D sparse signal recovery and image processing applications over the existing method, meanwhile achieving a significant reduction in the computational complexity.
我们考虑恢复具有未知聚类模式的二维块稀疏信号的问题。二维块稀疏模式在许多实际应用中自然出现,例如前景检测和逆合成孔径雷达成像。为了利用潜在的块稀疏结构,我们提出了一种二维模式耦合分层高斯先验模型。所提出的模式耦合分层高斯先验模型通过其共享的超参数在相邻系数之间施加软耦合机制。这种耦合机制能够有效且自动地学习潜在的不规则聚类模式,而无需任何关于稀疏信号块划分的先验知识。我们开发了一种计算效率高的贝叶斯推理方法,该方法将广义近似消息传递技术与所提出的先验模型相结合。仿真结果表明,与现有方法相比,所提出的方法在一系列二维稀疏信号恢复和图像处理应用中提供了有竞争力的恢复性能,同时显著降低了计算复杂度。