Suppr超能文献

具有未知聚类模式的稀疏信号的贝叶斯压缩感知

Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns.

作者信息

Shekaramiz Mohammad, Moon Todd K, Gunther Jacob H

机构信息

Electrical and Computer Engineering Department and Information Dynamics Laboratory, Utah State University, 4120 Old Main Hill, Logan, UT 84322-4120, USA.

出版信息

Entropy (Basel). 2019 Mar 5;21(3):247. doi: 10.3390/e21030247.

Abstract

We consider the sparse recovery problem of signals with an unknown clustering pattern in the context of multiple measurement vectors (MMVs) using the compressive sensing (CS) technique. For many MMVs in practice, the solution matrix exhibits some sort of clustered sparsity pattern, or clumpy behavior, along each column, as well as joint sparsity across the columns. In this paper, we propose a new sparse Bayesian learning (SBL) method that incorporates a total variation-like prior as a measure of the overall clustering pattern in the solution. We further incorporate a parameter in this prior to account for the emphasis on the amount of clumpiness in the supports of the solution to improve the recovery performance of sparse signals with an unknown clustering pattern. This parameter does not exist in the other existing algorithms and is learned via our hierarchical SBL algorithm. While the proposed algorithm is constructed for the MMVs, it can also be applied to the single measurement vector (SMV) problems. Simulation results show the effectiveness of our algorithm compared to other algorithms for both SMV and MMVs.

摘要

我们在多测量向量(MMV)的背景下,使用压缩感知(CS)技术来考虑具有未知聚类模式的信号的稀疏恢复问题。在实际中的许多多测量向量情况下,解矩阵沿每列呈现出某种聚类稀疏模式或块状行为,并且在各列之间存在联合稀疏性。在本文中,我们提出了一种新的稀疏贝叶斯学习(SBL)方法,该方法纳入了一种类似总变差的先验,作为解中整体聚类模式的一种度量。我们进一步在该先验中纳入一个参数,以考虑对解的支撑中块状程度的强调,从而提高具有未知聚类模式的稀疏信号的恢复性能。这个参数在其他现有算法中不存在,并且是通过我们的分层SBL算法学习得到的。虽然所提出的算法是针对多测量向量构建的,但它也可以应用于单测量向量(SMV)问题。仿真结果表明,与其他算法相比,我们的算法对于单测量向量和多测量向量问题均有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验