Suppr超能文献

通过心跳非线性动力学预测双相情感障碍中的情绪变化。

Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.

作者信息

Valenza Gaetano, Nardelli Mimma, Lanata' Antonio, Gentili Claudio, Bertschy Gilles, Kosel Markus, Scilingo Enzo Pasquale

出版信息

IEEE J Biomed Health Inform. 2016 Jul;20(4):1034-1043. doi: 10.1109/JBHI.2016.2554546. Epub 2016 Apr 20.

Abstract

Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t􀀀1, t􀀀2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.

摘要

双相情感障碍(BD)的特征是情绪状态从抑郁转变为(轻)躁狂。也可能出现混合状态,即抑郁和躁狂症状同时存在。在当前临床实践中,这种疾病的诊断仅基于主观访谈和问卷,而没有可靠的客观心理生理标志物。此外,没有生物标志物能够预测双相情感障碍的预后,或提供有关该现象未来临床病程的信息。为了克服这一局限性,我们在此提出一种仅使用源自心电图(ECG)的心跳非线性动力学来预测双相情感障碍患者情绪变化的方法。这里的情绪变化是指在两种心理状态之间的转变:心境正常状态(EUT),即良好的情感平衡状态,以及非心境正常(非EUT)状态。对参与欧洲项目PSYCHE的14名双相谱系患者(年龄:33.4±3.96,年龄范围:23 - 54岁;6名女性)的心率变异性(HRV)系列进行了分析,这些患者正在接受整夜心电图监测。数据来自一个可穿戴系统,该系统由一件带有集成织物电极和能够采集心电图的传感器的舒适T恤组成。每位患者每周接受两次监测,持续14周,在此期间能够进行正常(无结构)活动。从每次采集的数据中,选择最长的无伪迹心跳动力学片段进行进一步分析。该片段中5分钟的子片段用于估计HRV线性和非线性动力学的趋势。考虑来自t0日当前观察的数据以及(t - 1、t - 2、...)日过去的观察数据,预测t + 1日情绪状态(EUT/非EUT)的个性化预测准确率平均为69%,最高可达83.3%。这种方法开启了仅通过心跳非线性动力学来预测双相情感障碍患者情绪状态的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验