IEEE Trans Vis Comput Graph. 2017 Mar;23(3):1167-1178. doi: 10.1109/TVCG.2016.2628036. Epub 2016 Nov 11.
We present a framework to design inverse rig-functions-functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.
我们提出了一个框架来设计逆装备函数——将角色姿势的低级表示(如关节位置或曲面几何形状)映射到动画装备(动画师使用的表示)的函数。动画师使用动画装备设计场景,这是动画制作中广泛采用的框架,允许动画师通过直观的参数和接口设计角色姿势和几何形状。然而,大多数最先进的计算机动画技术通过原始的低级表示(如关节角度、关节位置或顶点坐标)来控制角色。这种差异常常阻止了最先进的技术在动画制作中的应用。我们的框架通过学习姿势的低级表示和动画装备之间的映射来解决这个问题。我们使用非线性回归技术,从动画师设计的示例动画序列中学习。当在骨骼空间中提供新的运动时,学习到的映射用于估计产生这种运动的装备控制。我们引入了两种用于生成这种映射的非线性函数:高斯过程回归和前馈神经网络。适当的解决方案取决于装备的性质和可用的训练数据量。我们展示了我们的框架应用于各种示例,包括铰接的两足角色、四足角色、面部动画装备和可变形角色。通过我们的系统,动画师可以自由地将任何运动合成算法应用于任意装备和动画管道,以便立即进行编辑。这极大地提高了 3D 动画的生产力,同时保留了艺术输入的灵活性和创造性。