Suppr超能文献

二值集嵌入的跨模态检索。

Binary Set Embedding for Cross-Modal Retrieval.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2899-2910. doi: 10.1109/TNNLS.2016.2609463. Epub 2016 Sep 27.

Abstract

Cross-modal retrieval is such a challenging topic that traditional global representations would fail to bridge the semantic gap between images and texts to a satisfactory level. Using local features from images and words from documents directly can be more robust for the scenario with large intraclass variations and small interclass discrepancies. In this paper, we propose a novel unsupervised binary coding algorithm called binary set embedding (BSE) to obtain meaningful hash codes for local features from the image domain and words from text domain. Understanding image features with the word vectors learned from the human language instead of the provided documents from data sets, BSE can map samples into a common Hamming space effectively and efficiently where each sample is represented by the sets of local feature descriptors from image and text domains. In particular, BSE explores relationship among local features in both feature level and image (text) level, which can balance the sensitivity of each other. Furthermore, a recursive orthogonalization procedure is applied to reduce the redundancy of codes. Extensive experiments demonstrate the superior performance of BSE compared with state-of-the-art cross-modal hashing methods using either image or text queries.

摘要

跨模态检索是一个极具挑战性的话题,传统的全局表示方法难以将图像和文本之间的语义鸿沟缩小到令人满意的程度。直接使用图像的局部特征和文档的单词特征对于具有较大类内变化和较小类间差异的情况更为稳健。在本文中,我们提出了一种新颖的无监督二进制编码算法,称为二进制集嵌入(Binary Set Embedding,BSE),用于从图像域的局部特征和文本域的单词中获得有意义的哈希码。通过使用人类语言学习的单词向量而不是从数据集中提供的文档来理解图像特征,BSE 可以有效地将样本映射到共同的汉明空间中,其中每个样本由图像和文本域的局部特征描述符集表示。具体来说,BSE 探索了特征级和图像(文本)级之间的局部特征之间的关系,这可以平衡彼此的敏感性。此外,应用递归正交化过程来减少代码的冗余。大量实验表明,与使用图像或文本查询的最先进的跨模态哈希方法相比,BSE 的性能更优。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验