Suppr超能文献

无监督局部特征哈希用于图像相似性搜索。

Unsupervised Local Feature Hashing for Image Similarity Search.

出版信息

IEEE Trans Cybern. 2016 Nov;46(11):2548-2558. doi: 10.1109/TCYB.2015.2480966. Epub 2015 Oct 13.

Abstract

The potential value of hashing techniques has led to it becoming one of the most active research areas in computer vision and multimedia. However, most existing hashing methods for image search and retrieval are based on global feature representations, which are susceptible to image variations such as viewpoint changes and background cluttering. Traditional global representations gather local features directly to output a single vector without the analysis of the intrinsic geometric property of local features. In this paper, we propose a novel unsupervised hashing method called unsupervised bilinear local hashing (UBLH) for projecting local feature descriptors from a high-dimensional feature space to a lower-dimensional Hamming space via compact bilinear projections rather than a single large projection matrix. UBLH takes the matrix expression of local features as input and preserves the feature-to-feature and image-to-image structures of local features simultaneously. Experimental results on challenging data sets including Caltech-256, SUN397, and Flickr 1M demonstrate the superiority of UBLH compared with state-of-the-art hashing methods.

摘要

哈希技术的潜在价值使其成为计算机视觉和多媒体领域中最活跃的研究领域之一。然而,大多数现有的图像搜索和检索哈希方法都是基于全局特征表示的,它们容易受到图像变化的影响,如视角变化和背景杂乱。传统的全局表示直接采集局部特征,输出单一向量,而不分析局部特征的内在几何属性。在本文中,我们提出了一种新颖的无监督哈希方法,称为无监督双线性局部哈希(UBLH),用于通过紧凑的双线性投影将高维特征空间中的局部特征描述符投影到低维 Hamming 空间,而不是通过单个大投影矩阵。UBLH 以局部特征的矩阵表达式作为输入,同时保留了局部特征之间以及图像之间的特征结构。在包括 Caltech-256、SUN397 和 Flickr 1M 在内的具有挑战性的数据集上的实验结果表明,UBLH 优于最先进的哈希方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验