Suppr超能文献

单分子研究聚合物中碳-碳双键在外力作用下的旋转。

Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers.

机构信息

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China.

Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University , Nanjing 210009, P.R. China.

出版信息

ACS Nano. 2017 Jan 24;11(1):194-203. doi: 10.1021/acsnano.6b07119. Epub 2016 Nov 17.

Abstract

Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼10 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.

摘要

碳-碳双键(C=C)普遍存在于天然和合成聚合物中。在体相研究中,由于控制外加力的方法有限,人们认为它们在机械上是惰性的,不会对聚合物的可伸展性做出贡献。在这里,我们使用原子力显微镜对含有 C=C 键的聚合物进行了单分子力谱研究。令人惊讶的是,我们发现通过施加约 1.7 nN 的拉伸力,在室温下可以直接观察到 C=C 键在约 1 ms 的时间尺度内的顺式-反式异构化。该反应通过自由基中间态进行,这一点通过自由基猝灭实验和量子化学建模得到了证实。将顺式 C=C 键转化为过渡态的无外力激活长度约为 0.5 Å,这表明在过渡力下反应速率提高了约 10 倍。基于密度泛函理论优化的结构,我们提出由于拉伸方向与聚合物中的 C=C 双键不平行,拉伸聚合物不仅提供张力以降低过渡势垒,而且提供扭转力以促进顺式 C=C 键的旋转。这解释了这种热“禁止”反应的过渡力明显较低的原因,并为聚合物主链对许多机械敏感物的活化力的“杠杆臂效应”提供了另一种解释。这项工作表明,在纳米尺度上精确控制力的方向对于力激活反应非常重要,这可能对设计应激响应材料具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验