Delvenne Jean-Charles, Sandberg Henrik
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, 4 Avenue Lemaître, 1348 Louvain-la-Neuve, Belgium
KTH Royal Institute of Technology, Osquldas väg 10, 100 44 Stockholm, Sweden.
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0218.
In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems.This article is part of the themed issue 'Horizons of cybernetical physics'.
在本文中,我们提倡使用开放动力系统,即与环境共享输入和输出变量的系统,以及由扬·威廉姆斯开创的耗散理论,将其作为微观和宏观层面热力学系统的模型。我们以线性系统作为研究案例,展示如何推导全局李雅普诺夫函数来分析相互连接系统的网络。我们定义了一个合适的动态非平衡温度概念,这使我们能够推导一个离散傅里叶定律,该定律支配着包含麦克斯韦 - 卡塔尼奥修正的集总离散空间系统之间的热交换。我们通过简要回顾从无损和确定性系统完整推导宏观系统(即在概率分布层面)的耗散和涨落的步骤来完善这些结果。本文是主题为“控制论物理学的视野”的特刊的一部分。