Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16339-43. doi: 10.1073/pnas.1312165110. Epub 2013 Sep 24.
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov-Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov-Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes.
自玻尔兹曼、吉布斯和麦克斯韦以来,统计物理学一直在研究微观动力学观测值与宏观非平衡(NE)性质之间的联系。我们在这里描述的模拟建立了柯尔莫哥洛夫-辛钦熵与从 NE 系统耗散到环境的热量之间的关系。首先,我们表明,柯尔莫哥洛夫-辛钦熵或动力学熵可以分解为系统和浴的分量,并且系统的熵表征了能量耗散的动力学。其次,我们发现系统动力学熵的平均变化与耗散到浴的能量的平均变化呈线性关系。浴的能量和时间常数固定了这两个量之间的动力学关系。这些结果为微观动力学变量与 NE 过程的宏观能量学之间提供了联系。