Kappelmann Jannick, Klein Bianca, Geilenkirchen Petra, Noack Stephan
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
Anal Bioanal Chem. 2017 Mar;409(9):2309-2326. doi: 10.1007/s00216-016-0174-9. Epub 2017 Jan 23.
In recent years the benefit of measuring positionally resolved C-labeling enrichment from tandem mass spectrometry (MS/MS) collisional fragments for improved precision of C-Metabolic Flux Analysis (C-MFA) has become evident. However, the usage of positional labeling information for C-MFA faces two challenges: (1) The mass spectrometric acquisition of a large number of potentially interfering mass transitions may hamper accuracy and sensitivity. (2) The positional identity of carbon atoms of product ions needs to be known. The present contribution addresses the latter challenge by deducing the maximal positional labeling information contained in LC-ESI-MS/MS spectra of product anions of central metabolism as well as product cations of amino acids. For this purpose, we draw on accurate mass spectrometry, selectively labeled standards, and published fragmentation pathways to structurally annotate all dominant mass peaks of a large collection of metabolites, some of which with a complete fragmentation pathway. Compiling all available information, we arrive at the most detailed map of carbon atom fate of LC-ESI-MS/MS collisional fragments yet, comprising 170 intense and structurally annotated product ions with unique carbon origin from 76 precursor ions of 72 metabolites. Our C-data proof that heuristic fragmentation rules often fail to yield correct fragment structures and we expose common pitfalls in the structural annotation of product ions. We show that the positionally resolved C-label information contained in the product ions that we structurally annotated allows to infer the entire isotopomer distribution of several central metabolism intermediates, which is experimentally demonstrated for malate using quadrupole-time-of-flight MS technology. Finally, the inclusion of the label information from a subset of these fragments improves flux precision in a Corynebacterium glutamicum model of the central carbon metabolism.
近年来,通过串联质谱(MS/MS)碰撞碎片测量位置分辨的C标记丰度以提高C代谢通量分析(C-MFA)精度的益处已变得明显。然而,将位置标记信息用于C-MFA面临两个挑战:(1)大量潜在干扰质量跃迁的质谱采集可能会妨碍准确性和灵敏度。(2)需要知道产物离子中碳原子的位置身份。本文通过推导中心代谢产物阴离子以及氨基酸产物阳离子的LC-ESI-MS/MS谱图中包含的最大位置标记信息来解决后一个挑战。为此,我们利用精确质谱、选择性标记标准品和已发表的裂解途径,对大量代谢物的所有主要质量峰进行结构注释,其中一些代谢物具有完整的裂解途径。综合所有可用信息,我们得到了迄今为止最详细的LC-ESI-MS/MS碰撞碎片碳原子命运图谱,包括来自72种代谢物的76个前体离子的170个强度高且经过结构注释的产物离子,其具有独特的碳来源。我们的C数据证明,启发式裂解规则常常无法产生正确的碎片结构,并且我们揭示了产物离子结构注释中的常见陷阱。我们表明,我们进行结构注释的产物离子中包含的位置分辨C标记信息能够推断几种中心代谢中间体的整个同位素异构体分布,使用四极杆-飞行时间质谱技术对苹果酸进行了实验验证。最后,将这些碎片子集中的标记信息纳入,可提高谷氨酸棒杆菌中心碳代谢模型中的通量精度。