Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
Currenta, GmbH & Co. OHG, 51368, Leverkusen, Germany.
Microb Cell Fact. 2022 May 9;21(1):78. doi: 10.1186/s12934-022-01806-4.
Currently, the generation of genetic diversity for microbial cell factories outpaces the screening of strain variants with omics-based phenotyping methods. Especially isotopic labeling experiments, which constitute techniques aimed at elucidating cellular phenotypes and supporting rational strain design by growing microorganisms on substrates enriched with heavy isotopes, suffer from comparably low throughput and the high cost of labeled substrates.
We present a miniaturized, parallelized, and automated approach to C-isotopic labeling experiments by establishing and validating a hot isopropanol quenching method on a robotic platform coupled with a microbioreactor cultivation system. This allows for the first time to conduct automated labeling experiments at a microtiter plate scale in up to 48 parallel batches. A further innovation enabled by the automated quenching method is the analysis of free amino acids instead of proteinogenic ones on said microliter scale. Capitalizing on the latter point and as a proof of concept, we present an isotopically instationary labeling experiment in Corynebacterium glutamicum ATCC 13032, generating dynamic labeling data of free amino acids in the process.
Our results show that a robotic liquid handler is sufficiently fast to generate informative isotopically transient labeling data. Furthermore, the amount of biomass obtained from a sub-milliliter cultivation in a microbioreactor is adequate for the detection of labeling patterns of free amino acids. Combining the innovations presented in this study, isotopically stationary and instationary automated labeling experiments can be conducted, thus fulfilling the prerequisites for C-metabolic flux analyses in high-throughput.
目前,微生物细胞工厂的遗传多样性的产生速度超过了基于组学表型的筛选方法对菌株变体的筛选。特别是同位素标记实验,它是一种旨在阐明细胞表型并通过在富含重同位素的底物上培养微生物来支持理性菌株设计的技术,其通量相对较低,且标记底物的成本较高。
我们通过在机器人平台上建立和验证热异丙醇淬灭方法,并结合微生物反应器培养系统,提出了一种小型化、并行化和自动化的 C 同位素标记实验方法。这使得首次能够在多达 48 个平行批次的微滴定板规模上进行自动化标记实验。自动化淬灭方法带来的另一个创新是可以在所述微升规模上分析游离氨基酸而不是蛋白质氨基酸。利用后一点并作为概念验证,我们在谷氨酸棒杆菌 ATCC 13032 中进行了同位素非稳定标记实验,在此过程中生成了游离氨基酸的动态标记数据。
我们的结果表明,机器人液体处理机的速度足以生成有信息量的同位素瞬变标记数据。此外,从微生物反应器中进行的亚毫升培养中获得的生物质量足以检测游离氨基酸的标记模式。结合本研究中提出的创新,可以进行同位素稳定和非稳定的自动化标记实验,从而为高通量 C 代谢通量分析奠定了先决条件。