Suppr超能文献

基于结构相似性引导的图像二值化用于表皮表面微观结构图像的自动分割

Structure similarity-guided image binarization for automatic segmentation of epidermis surface microstructure images.

作者信息

Zou Y, Lei B, Dong F, Xu G, Sun S, Xia P

机构信息

Institute of Intelligent Vision and Image Information, China Three Gorges University, Hubei, China.

Group for Biomedical Imaging and Bioinformatics, China Three Gorges University, Hubei, China.

出版信息

J Microsc. 2017 May;266(2):153-165. doi: 10.1111/jmi.12525. Epub 2017 Jan 24.

Abstract

Partitioning epidermis surface microstructure (ESM) images into skin ridge and skin furrow regions is an important preprocessing step before quantitative analyses on ESM images. Binarization segmentation is a potential technique for partitioning ESM images because of its computational simplicity and ease of implementation. However, even for some state-of-the-art binarization methods, it remains a challenge to automatically segment ESM images, because the grey-level histograms of ESM images have no obvious external features to guide automatic assessment of appropriate thresholds. Inspired by human visual perceptual functions of structural feature extraction and comparison, we propose a structure similarity-guided image binarization method. The proposed method seeks for the binary image that best approximates the input ESM image in terms of structural features. The proposed method is validated by comparing it with two recently developed automatic binarization techniques as well as a manual binarization method on 20 synthetic noisy images and 30 ESM images. The experimental results show: (1) the proposed method possesses self-adaption ability to cope with different images with same grey-level histogram; (2) compared to two automatic binarization techniques, the proposed method significantly improves average accuracy in segmenting ESM images with an acceptable decrease in computational efficiency; (3) and the proposed method is applicable for segmenting practical EMS images. (Matlab code of the proposed method can be obtained by contacting with the corresponding author.).

摘要

在对表皮表面微观结构(ESM)图像进行定量分析之前,将其划分为皮嵴和皮沟区域是一项重要的预处理步骤。由于其计算简单且易于实现,二值化分割是一种用于划分ESM图像的潜在技术。然而,即使对于一些最先进的二值化方法,自动分割ESM图像仍然是一个挑战,因为ESM图像的灰度直方图没有明显的外部特征来指导自动评估合适的阈值。受人类视觉感知功能中结构特征提取和比较的启发,我们提出了一种结构相似性引导的图像二值化方法。该方法旨在寻找在结构特征方面最接近输入ESM图像的二值图像。通过在20幅合成噪声图像和30幅ESM图像上与两种最近开发的自动二值化技术以及一种手动二值化方法进行比较,对所提出的方法进行了验证。实验结果表明:(1)所提出的方法具有自适应能力,能够处理具有相同灰度直方图的不同图像;(2)与两种自动二值化技术相比,所提出的方法在分割ESM图像时显著提高了平均准确率,同时计算效率有可接受的降低;(3)所提出的方法适用于分割实际的EMS图像。(可通过联系通讯作者获取所提出方法的Matlab代码。)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验