Weirich Johanna, Bräutigam Cornelia, Mühlenkamp Melanie, Franz-Wachtel Mirita, Macek Boris, Meuskens Ina, Skurnik Mikael, Leskinen Katarzyna, Bohn Erwin, Autenrieth Ingo, Schütz Monika
a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany.
b Proteome Center Tübingen, Universität Tübingen , Tübingen , Germany.
Virulence. 2017 Oct 3;8(7):1170-1188. doi: 10.1080/21505594.2016.1278333. Epub 2017 Jan 24.
The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.
多重耐药革兰氏阴性菌的出现需要新的治疗方法来对抗细菌感染。针对毒力因子的生物合成可能是一种替代策略,而不是用抗生素杀死细菌。革兰氏阴性菌的外膜(OM)起到物理屏障的作用。同时,它促进分子交换,并含有大量与毒力相关的蛋白质。为了将蛋白质插入外膜,需要一种必需的寡聚膜相关蛋白复合物,即β-桶组装机器(BAM)。由于BAM对于外膜蛋白(OMP)的生物合成至关重要,因此BAM以及周质伴侣蛋白可能是开发新型抗感染药物的有吸引力的靶点。在此,我们旨在阐明属于OMP生物合成机器的哪些蛋白质在赋予细菌适应性、OM屏障功能、促进特定毒力因子的生物合成以及确定总体毒力方面具有最重要的功能。为此,我们使用肠道病原体小肠结肠炎耶尔森菌作为模型系统。我们分别敲除了BAM的所有非必需成分(BamB、C和E)以及周质伴侣蛋白DegP、SurA和Skp。总之,我们发现敲除BamB或SurA产生了最显著的表型,在小鼠感染模型中,这两种敲除都导致小肠结肠炎耶尔森菌显著减毒甚至无毒。因此,我们认为BamB和SurA都是未来开发新型抗感染药物的有前景的靶点。