Suppr超能文献

处理公共蛋白质组学数据的黄金时代。

A Golden Age for Working with Public Proteomics Data.

作者信息

Martens Lennart, Vizcaíno Juan Antonio

机构信息

Medical Biotechnology Center, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.

出版信息

Trends Biochem Sci. 2017 May;42(5):333-341. doi: 10.1016/j.tibs.2017.01.001. Epub 2017 Jan 22.

Abstract

Data sharing in mass spectrometry (MS)-based proteomics is becoming a common scientific practice, as is now common in the case of other, more mature 'omics' disciplines like genomics and transcriptomics. We want to highlight that this situation, unprecedented in the field, opens a plethora of opportunities for data scientists. First, we explain in some detail some of the work already achieved, such as systematic reanalysis efforts. We also explain existing applications of public proteomics data, such as proteogenomics and the creation of spectral libraries and spectral archives. Finally, we discuss the main existing challenges and mention the first attempts to combine public proteomics data with other types of omics data sets.

摘要

在基于质谱(MS)的蛋白质组学中,数据共享正成为一种常见的科学实践,就像在基因组学和转录组学等其他更成熟的“组学”学科中一样。我们想强调的是,这种在该领域前所未有的情况为数据科学家带来了大量机会。首先,我们详细解释了已经取得的一些工作,比如系统性的重新分析努力。我们还解释了公共蛋白质组学数据的现有应用,如蛋白质基因组学以及谱图库和光谱档案的创建。最后,我们讨论了主要的现有挑战,并提及了将公共蛋白质组学数据与其他类型组学数据集相结合的初步尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e27/5414595/f174cd5c9ac3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验