Suppr超能文献

灰质独立成分分析(ICA)及血氧水平依赖(BOLD)数据变异系数映射对阿尔茨海默病和行为变异型额颞叶痴呆功能性连接变化检测的影响

The Effect of Gray Matter ICA and Coefficient of Variation Mapping of BOLD Data on the Detection of Functional Connectivity Changes in Alzheimer's Disease and bvFTD.

作者信息

Tuovinen Timo, Rytty Riikka, Moilanen Virpi, Abou Elseoud Ahmed, Veijola Juha, Remes Anne M, Kiviniemi Vesa J

机构信息

Department of Diagnostic Radiology, Oulu University HospitalOulu, Finland; Oulu Functional NeuroImaging group, Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of OuluOulu, Finland; Medical Research Center Oulu, Oulu University HospitalOulu, Finland.

Department of Diagnostic Radiology, Oulu University HospitalOulu, Finland; Oulu Functional NeuroImaging group, Research Unit of Medical Imaging, Physics and Technology, the Faculty of Medicine, University of OuluOulu, Finland; Medical Research Center Oulu, Oulu University HospitalOulu, Finland; Research Unit of Clinical Neuroscience, Faculty of Medicine, University of OuluOulu, Finland.

出版信息

Front Hum Neurosci. 2017 Jan 9;10:680. doi: 10.3389/fnhum.2016.00680. eCollection 2016.

Abstract

Resting-state fMRI results in neurodegenerative diseases have been somewhat conflicting. This may be due to complex partial volume effects of CSF in BOLD signal in patients with brain atrophy. To encounter this problem, we used a coefficient of variation (CV) map to highlight artifacts in the data, followed by analysis of gray matter voxels in order to minimize brain volume effects between groups. The effects of these measures were compared to whole brain ICA dual regression results in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). 23 AD patients, 21 bvFTD patients and 25 healthy controls were included. The quality of the data was controlled by CV mapping. For detecting functional connectivity (FC) differences whole brain ICA (wbICA) and also segmented gray matter ICA (gmICA) followed by dual regression were conducted, both of which were performed both before and after data quality control. Decreased FC was detected in posterior DMN in the AD group and in the Salience network in the bvFTD group after combining CV quality control with gmICA. Before CV quality control, the decreased connectivity finding was not detectable in gmICA in neither of the groups. Same finding recurred when exclusion was based on randomization. The subjects excluded due to artifacts noticed in the CV maps had significantly lower temporal signal-to-noise ratio than the included subjects. Data quality measure CV is an effective tool in detecting artifacts from resting state analysis. CV reflects temporal dispersion of the BOLD signal stability and may thus be most helpful for spatial ICA, which has a blind spot in spatially correlating widespread artifacts. CV mapping in conjunction with gmICA yields results suiting previous findings both in AD and bvFTD.

摘要

静息态功能磁共振成像(fMRI)在神经退行性疾病中的结果存在一定的矛盾。这可能是由于脑萎缩患者脑脊液在血氧水平依赖(BOLD)信号中存在复杂的部分容积效应。为解决这个问题,我们使用变异系数(CV)图来突出数据中的伪影,随后对灰质体素进行分析,以尽量减少组间脑容量效应。将这些措施的效果与阿尔茨海默病(AD)和行为变异型额颞叶痴呆(bvFTD)的全脑独立成分分析(ICA)双回归结果进行比较。纳入了23例AD患者、21例bvFTD患者和25名健康对照者。通过CV映射控制数据质量。为检测功能连接(FC)差异,进行了全脑ICA(wbICA)以及分割灰质ICA(gmICA)并随后进行双回归分析,这两种分析均在数据质量控制前后进行。在将CV质量控制与gmICA相结合后,在AD组的后默认模式网络(DMN)和bvFTD组的突显网络中检测到FC降低。在CV质量控制之前,两组在gmICA中均未检测到连接性降低的发现。当基于随机化进行排除时,同样的发现再次出现。因CV图中发现伪影而被排除的受试者的时间信噪比明显低于纳入的受试者。数据质量测量指标CV是检测静息态分析中伪影的有效工具。CV反映了BOLD信号稳定性的时间离散度,因此可能对空间ICA最有帮助,因为空间ICA在空间关联广泛伪影方面存在盲点。CV映射与gmICA相结合产生的结果与AD和bvFTD中先前的发现相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a94d/5220074/280d9b90a0d0/fnhum-10-00680-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验