Department of Water Resources and Environment, Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China.
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, PR China.
Sci Rep. 2017 Jan 25;7:41239. doi: 10.1038/srep41239.
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
提出了一种新的基于模糊小波神经网络(FWNN)的高效混合智能方法,用于有效模拟和仿真在厌氧/缺氧/好氧(AAO)废水处理工艺中邻苯二甲酸二甲酯(DMP)的生物降解过程。利用神经网络(NN)的自学习和记忆能力、模糊逻辑(FL)的处理不确定性能力、小波变换(WT)的局部细节分析优势和遗传算法(GA)的全局搜索能力,该混合智能模型可以从各种水质变量中提取动态行为和复杂的相互关系。为了找到 FWNN 模型参数的最优值,采用了一种混合学习算法,该算法结合了改进的遗传优化和梯度下降算法。结果表明,与 NN 模型(由 GA 优化)和动力学模型相比,所提出的 FWNN 模型具有更快的收敛速度、更高的预测性能,并且 RMSE(0.080)、MSE(0.0064)、MAPE(1.8158)更小,R(0.9851)值更高。这表明 FWNN 模型比机理模型更能准确地模拟出水中的 DMP。