Suppr超能文献

过氧化氢介导的无HemQ蛋白情况下粪卟啉转化为血红素b——来自首个晶体结构和动力学研究的经验教训

Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ-lessons from the first crystal structure and kinetic studies.

作者信息

Hofbauer Stefan, Mlynek Georg, Milazzo Lisa, Pühringer Dominic, Maresch Daniel, Schaffner Irene, Furtmüller Paul G, Smulevich Giulietta, Djinović-Carugo Kristina, Obinger Christian

机构信息

Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.

Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy.

出版信息

FEBS J. 2016 Dec;283(23):4386-4401. doi: 10.1111/febs.13930. Epub 2016 Nov 14.

Abstract

UNLABELLED

Heme biosynthesis in Gram-positive bacteria follows a recently described coproporphyrin-dependent pathway with HemQ catalyzing the decarboxylation of coproheme to heme b. Here we present the first crystal structure of a HemQ (homopentameric coproheme-HemQ from Listeria monocytogenes) at 1.69 Å resolution and the conversion of coproheme to heme b followed by UV-vis and resonance Raman spectroscopy as well as mass spectrometry. The ferric five-coordinated coproheme iron of HemQ is weakly bound by a neutral proximal histidine H174. In the crystal structure of the resting state, the distal Q187 (conserved in Firmicutes HemQ) is H-bonded with propionate p2 and the hydrophobic distal cavity lacks solvent water molecules. Two H O molecules are shown to be necessary for decarboxylation of the propionates p2 and p4, thereby forming the corresponding vinyl groups of heme b. The overall reaction is relatively slow (k /K = 1.8 × 10 m ·s at pH 7.0) and occurs in a stepwise manner with a three-propionate intermediate. We present the noncovalent interactions between coproheme and the protein and propose a two-step reaction mechanism. Furthermore, the structure of coproheme-HemQ is compared to that of the phylogenetically related heme b-containing chlorite dismutases.

DATABASE

Structural data are available in the PDB under the accession number 5LOQ.

摘要

未标记

革兰氏阳性菌中的血红素生物合成遵循最近描述的依赖于粪卟啉的途径,其中HemQ催化粪卟啉原脱羧生成血红素b。在此,我们展示了HemQ(来自单核细胞增生李斯特菌的同五聚体粪卟啉原 - HemQ)的首个晶体结构,分辨率为1.69 Å,并通过紫外 - 可见光谱、共振拉曼光谱以及质谱对粪卟啉原向血红素b的转化进行了研究。HemQ的三价五配位粪卟啉原铁与一个中性的近端组氨酸H174弱结合。在静止状态的晶体结构中,远端的Q187(在厚壁菌门HemQ中保守)与丙酸酯p2形成氢键,疏水的远端腔中没有溶剂水分子。研究表明,两个水分子对于丙酸酯p2和p4的脱羧是必需的,从而形成血红素b相应的乙烯基。整个反应相对较慢(在pH 7.0时k /K = 1.8 × 10 m·s),并以逐步方式通过一个三丙酸酯中间体进行。我们展示了粪卟啉原与蛋白质之间的非共价相互作用,并提出了一个两步反应机制。此外,还将粪卟啉原 - HemQ的结构与系统发育相关的含血红素b的亚氯酸盐歧化酶的结构进行了比较。

数据库

结构数据可在蛋白质数据银行(PDB)中获取,登录号为5LOQ。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecff/5157759/204acff20491/FEBS-283-4386-g001.jpg

相似文献

2
Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O and HO Yield Ferric Heme b.
Biochemistry. 2017 Jan 10;56(1):189-201. doi: 10.1021/acs.biochem.6b00958. Epub 2016 Dec 16.
4
Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ.
Biochemistry. 2016 Sep 27;55(38):5398-412. doi: 10.1021/acs.biochem.6b00701. Epub 2016 Sep 15.
5
The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: Effect on structure and catalysis.
J Inorg Biochem. 2019 Jun;195:61-70. doi: 10.1016/j.jinorgbio.2019.03.009. Epub 2019 Mar 21.
6
Decarboxylation involving a ferryl, propionate, and a tyrosyl group in a radical relay yields heme .
J Biol Chem. 2018 Mar 16;293(11):3989-3999. doi: 10.1074/jbc.RA117.000830. Epub 2018 Feb 2.
7
Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme .
ACS Catal. 2019 Aug 2;9(8):6766-6782. doi: 10.1021/acscatal.9b00963. Epub 2019 Jun 18.
8
Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ.
Biochemistry. 2015 Jul 7;54(26):4022-32. doi: 10.1021/acs.biochem.5b00492. Epub 2015 Jun 23.
9
Deciphering the role of the distal pocket in Staphylococcus aureus coproheme decarboxylase.
J Inorg Biochem. 2025 Aug;269:112896. doi: 10.1016/j.jinorgbio.2025.112896. Epub 2025 Mar 15.
10
HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria.
Arch Biochem Biophys. 2015 May 15;574:27-35. doi: 10.1016/j.abb.2015.02.017. Epub 2015 Feb 21.

引用本文的文献

2
Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria.
Front Microbiol. 2024 Mar 21;15:1345389. doi: 10.3389/fmicb.2024.1345389. eCollection 2024.
4
Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis.
Comput Struct Biotechnol J. 2023 Jul 24;21:3933-3945. doi: 10.1016/j.csbj.2023.07.024. eCollection 2023.
5
Reactivity of Coproheme Decarboxylase with Monovinyl, Monopropionate Deuteroheme.
Biomolecules. 2023 Jun 6;13(6):946. doi: 10.3390/biom13060946.
6
Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial .
J Raman Spectrosc. 2022 May;53(5):890-901. doi: 10.1002/jrs.6326. Epub 2022 Mar 8.
7
Roles of High-valent Hemes and pH Dependence in Halite Decomposition Catalyzed by Chlorite Dismutase from .
ACS Catal. 2022 Jul 15;12(14):8641-8657. doi: 10.1021/acscatal.2c01428. Epub 2022 Jul 6.
8
Reorienting Mechanism of Harderoheme in Coproheme Decarboxylase-A Computational Study.
Int J Mol Sci. 2022 Feb 25;23(5):2564. doi: 10.3390/ijms23052564.
9
Initial Steps to Engineer Coproheme Decarboxylase to Obtain Stereospecific Monovinyl, Monopropionyl Deuterohemes.
Front Bioeng Biotechnol. 2022 Jan 24;9:807678. doi: 10.3389/fbioe.2021.807678. eCollection 2021.
10
Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C. diphtheriae.
Biophys J. 2021 Sep 7;120(17):3600-3614. doi: 10.1016/j.bpj.2021.06.042. Epub 2021 Jul 31.

本文引用的文献

1
Chemistry and Molecular Dynamics Simulations of Heme b-HemQ and Coproheme-HemQ.
Biochemistry. 2016 Sep 27;55(38):5398-412. doi: 10.1021/acs.biochem.6b00701. Epub 2016 Sep 15.
3
Ligand Binding to Chlorite Dismutase from Magnetospirillum sp.
J Phys Chem B. 2015 Oct 29;119(43):13859-69. doi: 10.1021/acs.jpcb.5b04141. Epub 2015 Aug 24.
4
Unusual Peroxide-Dependent, Heme-Transforming Reaction Catalyzed by HemQ.
Biochemistry. 2015 Jul 7;54(26):4022-32. doi: 10.1021/acs.biochem.5b00492. Epub 2015 Jun 23.
5
Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway.
Mol Microbiol. 2015 Aug;97(3):472-87. doi: 10.1111/mmi.13041. Epub 2015 May 26.
6
Recent developments in understanding the iron acquisition strategies of gram positive pathogens.
FEMS Microbiol Rev. 2015 Jul;39(4):592-630. doi: 10.1093/femsre/fuv009. Epub 2015 Apr 9.
7
Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme.
Arch Biochem Biophys. 2015 May 15;574:3-17. doi: 10.1016/j.abb.2015.03.004. Epub 2015 Mar 14.
8
HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria.
Arch Biochem Biophys. 2015 May 15;574:27-35. doi: 10.1016/j.abb.2015.02.017. Epub 2015 Feb 21.
9
Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2210-5. doi: 10.1073/pnas.1416285112. Epub 2015 Feb 2.
10
Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes.
Arch Biochem Biophys. 2015 May 15;574:36-48. doi: 10.1016/j.abb.2015.01.010. Epub 2015 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验