Suppr超能文献

局灶性癫痫中的大规模皮质-皮质下功能网络:基底神经节的作用。

Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia.

作者信息

Výtvarová Eva, Mareček Radek, Fousek Jan, Strýček Ondřej, Rektor Ivan

机构信息

Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic.

Brain and Mind Research Program, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.

出版信息

Neuroimage Clin. 2016 Dec 18;14:28-36. doi: 10.1016/j.nicl.2016.12.014. eCollection 2017.

Abstract

OBJECTIVES

The aim was to describe the contribution of basal ganglia (BG) thalamo-cortical circuitry to the whole-brain functional connectivity in focal epilepsies.

METHODS

Interictal resting-state fMRI recordings were acquired in 46 persons with focal epilepsies. Of these 46, 22 had temporal lobe epilepsy: 9 left temporal (LTLE), 13 right temporal (RTLE); 15 had frontal lobe epilepsy (FLE); and 9 had parietal/occipital lobe epilepsy (POLE). There were 20 healthy controls. The complete weighted network was analyzed based on correlation matrices of 90 and 194 regions. The network topology was quantified on a global and regional level by measures based on graph theory, and connection-level changes were analyzed by the partial least square method.

RESULTS

In all patient groups except RTLE, the shift of the functional network topology away from random was observed (normalized clustering coefficient and characteristic path length were higher in patient groups than in controls). Links contributing to this change were found in the cortico-subcortical connections. Weak connections (low correlations) consistently contributed to this modification of the network. The importance of regions changed: decreases in the subcortical areas and both decreases and increases in the cortical areas were observed in node strength, clustering coefficient and eigenvector centrality in patient groups when compared to controls. Node strength decreases of the basal ganglia, i.e. the putamen, caudate, and pallidum, were displayed in LTLE, FLE, and POLE. The connectivity within the basal ganglia-thalamus circuitry was not disturbed; the disturbance concerned the connectivity between the circuitry and the cortex.

SIGNIFICANCE

Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

摘要

目的

本研究旨在描述基底神经节(BG)丘脑 - 皮质神经回路对局灶性癫痫全脑功能连接的贡献。

方法

对46例局灶性癫痫患者进行发作间期静息态功能磁共振成像(fMRI)记录。这46例患者中,22例为颞叶癫痫:9例左侧颞叶癫痫(LTLE),13例右侧颞叶癫痫(RTLE);15例为额叶癫痫(FLE);9例为顶叶/枕叶癫痫(POLE)。另有20名健康对照者。基于90个和194个区域的相关矩阵分析完整加权网络。通过基于图论的方法在全局和区域水平上量化网络拓扑结构,并采用偏最小二乘法分析连接水平的变化。

结果

除RTLE外,在所有患者组中均观察到功能网络拓扑结构偏离随机状态(患者组的标准化聚类系数和特征路径长度高于对照组)。导致这种变化的连接存在于皮质 - 皮质下连接中。弱连接(低相关性)持续促成网络的这种改变。区域的重要性发生了变化:与对照组相比,患者组在节点强度、聚类系数和特征向量中心性方面,皮质下区域降低,皮质区域既有降低也有增加。在LTLE、FLE和POLE中均显示出基底神经节(即壳核、尾状核和苍白球)的节点强度降低。基底神经节 - 丘脑神经回路内的连接性未受干扰;受干扰的是该神经回路与皮质之间的连接性。

意义

局灶性癫痫影响癫痫灶区域以外的大规模脑网络。LTLE、FLE和POLE中显示出皮质 - 皮质下功能连接紊乱。皮质和皮质下结构之间静息态功能连接的显著变化表明基底神经节和丘脑在局灶性癫痫中起重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/109f/5222946/b75cd95a364e/gr1.jpg

相似文献

1
Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia.
Neuroimage Clin. 2016 Dec 18;14:28-36. doi: 10.1016/j.nicl.2016.12.014. eCollection 2017.
2
Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic-clonic seizures.
Brain. 2020 Jan 1;143(1):175-190. doi: 10.1093/brain/awz361.
3
Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study.
Epilepsy Res. 2016 Dec;128:12-20. doi: 10.1016/j.eplepsyres.2016.10.011. Epub 2016 Oct 24.
6
Aberrant topological patterns of brain structural network in temporal lobe epilepsy.
Epilepsia. 2015 Dec;56(12):1992-2002. doi: 10.1111/epi.13225. Epub 2015 Nov 4.
7
Dynamic directed interictal connectivity in left and right temporal lobe epilepsy.
Epilepsia. 2015 Feb;56(2):207-17. doi: 10.1111/epi.12904. Epub 2015 Jan 20.
8
Cortico-thalamic hypo- and hyperconnectivity extend consistently to basal ganglia in schizophrenia.
Neuropsychopharmacology. 2018 Oct;43(11):2239-2248. doi: 10.1038/s41386-018-0059-z. Epub 2018 Apr 12.
9
Aberrant basal ganglia-thalamo-cortical network topology in juvenile absence epilepsy: A resting-state EEG-fMRI study.
Seizure. 2021 Jan;84:78-83. doi: 10.1016/j.seizure.2020.11.015. Epub 2020 Nov 30.
10
Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome.
Brain. 2012 Jun;135(Pt 6):1937-46. doi: 10.1093/brain/aws056. Epub 2012 Mar 19.

引用本文的文献

1
The Role of Neuroinflammation and Network Anomalies in Drug-Resistant Epilepsy.
Neurosci Bull. 2025 May;41(5):881-905. doi: 10.1007/s12264-025-01348-w. Epub 2025 Feb 24.
2
Individualized morphological covariation network aberrance associated with seizure relapse after antiseizure medication withdrawal.
Neurol Sci. 2025 May;46(5):2235-2248. doi: 10.1007/s10072-024-07958-y. Epub 2025 Jan 11.
3
Individual metabolic brain network abnormalities associated with drug-resistant mTLE vary in surgical outcomes.
Front Neurol. 2024 Dec 18;15:1444787. doi: 10.3389/fneur.2024.1444787. eCollection 2024.
4
Local gradient analysis of human brain function using the Vogt-Bailey Index.
Brain Struct Funct. 2024 Mar;229(2):497-512. doi: 10.1007/s00429-023-02751-7. Epub 2024 Jan 31.
5
Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy.
Brain Imaging Behav. 2024 Apr;18(2):352-367. doi: 10.1007/s11682-023-00835-w. Epub 2023 Dec 12.
7
The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis.
Cogn Neurodyn. 2022 Dec;16(6):1449-1460. doi: 10.1007/s11571-022-09788-0. Epub 2022 Feb 15.
9
Global Alterations of Whole Brain Structural Connectome in Parkinson's Disease: A Meta-analysis.
Neuropsychol Rev. 2023 Dec;33(4):783-802. doi: 10.1007/s11065-022-09559-y. Epub 2022 Sep 20.
10
MRI Evolution of a Patient with Viral Tick-Borne Encephalitis and Polymorphic Seizures.
Diagnostics (Basel). 2022 Aug 4;12(8):1888. doi: 10.3390/diagnostics12081888.

本文引用的文献

1
High-Frequency Oscillations in the Human Anterior Nucleus of the Thalamus.
Brain Stimul. 2016 Jul-Aug;9(4):629-31. doi: 10.1016/j.brs.2016.04.010. Epub 2016 Apr 14.
2
Significant feed-forward connectivity revealed by high frequency components of BOLD fMRI signals.
Neuroimage. 2015 Nov 1;121:69-77. doi: 10.1016/j.neuroimage.2015.07.036. Epub 2015 Jul 21.
3
The (in)stability of functional brain network measures across thresholds.
Neuroimage. 2015 Sep;118:651-61. doi: 10.1016/j.neuroimage.2015.05.046. Epub 2015 May 27.
4
Global and regional functional connectivity maps of neural oscillations in focal epilepsy.
Brain. 2015 Aug;138(Pt 8):2249-62. doi: 10.1093/brain/awv130. Epub 2015 May 16.
5
Brain Network Organization in Focal Epilepsy: A Systematic Review and Meta-Analysis.
PLoS One. 2014 Dec 10;9(12):e114606. doi: 10.1371/journal.pone.0114606. eCollection 2014.
6
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.
Epilepsy Res. 2014 Dec;108(10):1770-81. doi: 10.1016/j.eplepsyres.2014.09.023. Epub 2014 Sep 28.
8
Specific resting-state brain networks in mesial temporal lobe epilepsy.
Front Neurol. 2014 Jul 14;5:127. doi: 10.3389/fneur.2014.00127. eCollection 2014.
9
Graph theory findings in the pathophysiology of temporal lobe epilepsy.
Clin Neurophysiol. 2014 Jul;125(7):1295-305. doi: 10.1016/j.clinph.2014.04.004. Epub 2014 Apr 21.
10
Disrupted anatomic white matter network in left mesial temporal lobe epilepsy.
Epilepsia. 2014 May;55(5):674-682. doi: 10.1111/epi.12581. Epub 2014 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验