Morales-Artacho A J, Lacourpaille L, Guilhem G
Laboratory "Sport, Expertise and Performance" (EA 7370), Research Department, French Institute of Sport (INSEP), Paris, France.
Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Scand J Med Sci Sports. 2017 Dec;27(12):1959-1969. doi: 10.1111/sms.12832. Epub 2017 Jan 26.
This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness.
本研究通过弹性成像和被动扭矩测量,调查了主动和/或被动热身任务对腘绳肌僵硬度的影响。在不同的时间点,14名男性随机完成了四种热身方案,包括对照组、骑行组、泡沫轴放松组或骑行加泡沫轴放松组(混合组)。在每种实验条件之前、5分钟和30分钟后,通过剪切波弹性成像评估腘绳肌的僵硬度,同时评估被动扭矩-角度关系和最大活动范围(ROM)。在5分钟时,骑行组和混合组的剪切模量降低(分别为-10.3%±5.9%和-7.7%±8.4%;P≤.0003,效应大小[ES]≥0.24),被动扭矩降低(分别为-7.17%±8.6%和-6.2%±7.5%;P≤.051,ES≥0.28),ROM增加(分别为+2.9%±2.9%和+3.2%±3.5%;P≤.001,ES≥0.30);混合组在30分钟后,剪切模量(P=.001,ES=0.21)和被动扭矩(P≤.068,ES≥0.2)仍略有下降,而ROM增加(P=.046,ES=0.24)。泡沫轴放松在5分钟时使剪切模量立即出现“小幅度”的短期下降(-5.4%±5.7%;P=.05,ES=0.21),在任何时间点被动扭矩或ROM均无显著变化(P≥.12,ES≤0.23)。这些结果表明,与骑行相比,联合热身对肌肉僵硬度没有产生急性的更优效果,这为主动热身在降低肌肉僵硬度方面的关键作用提供了证据。在优化对肌肉僵硬度的影响时,应考虑热身与比赛之间的时间间隔。