Asselin Pierre, Berger Yann, Huet Thérèse R, Margulès Laurent, Motiyenko Roman, Hendricks Richard J, Tarbutt Michael R, Tokunaga Sean K, Darquié Benoît
Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005, Paris, France and CNRS, UMR 8233, MONARIS, F-75005, Paris, France.
Univ. Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, F-59000 Lille, France.
Phys Chem Chem Phys. 2017 Feb 8;19(6):4576-4587. doi: 10.1039/c6cp08724h.
Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CHReO and CHReO isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter D of the Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.
对多原子分子进行精确的光谱分析,能在物理化学和基础物理学领域取得许多重大进展。我们使用了几种新型高分辨率光谱设备,以增进对甲基三氧化铼(MTO)的转动和振转结构的理解。MTO是一类大型铼氧化物化合物家族的非手性母体,是计划用于测量手性分子中宇称不守恒的理想候选物种。利用脉冲超声速射流、低温缓冲气体池和室温吸收池中的毫米波和红外光谱,我们以前所未有的精度探测了气相中CHReO及其同位素变体的基态以及Re[双键,长度如m短划]O反对称和对称伸缩激发态。通过将转动光谱扩展到150 - 300 GHz范围,我们表征了高达J = 43和K = 41的基态转动和超精细结构,从而对转动、四次方和超精细参数进行了改进,并确定了六次方参数以及对四极超精细常数的离心畸变校正。我们在970 - 1015 cm范围内获得了6至300 K温度下的振转数据,分辨率低至8 MHz,精度为30 MHz。我们利用这些数据确定更精确的激发态转动、科里奥利和四次方参数,以及Re同位素变体的基态离心畸变参数D。我们还考虑了振转跃迁中的超精细结构,从而确定了上态铼原子四极耦合常数eQq'。