Reif Maria M, Kallies Christopher, Knecht Volker
Physics Department (T38), Technische Universität München, James-Franck-Str. 1, Garching 85748, Germany.
Institute of Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany.
Membranes (Basel). 2017 Jan 25;7(1):5. doi: 10.3390/membranes7010005.
The effect of ion binding on the structural, mechanical, dynamic and electrostatic properties of a 1-palmitoyl-2-oleoyl--glycero-3-phosphocholine (POPC) bilayer in a 0.5 M aqueous NaCl solution is investigated using classical atomistic molecular dynamics simulation with different force-field descriptions for ion-ion and ion-lipid interactions. Most importantly, the repulsive Lennard-Jones parameters for the latter were modified, such that approximately similar binding of cations and anions to the lipid membrane is achieved. This was done to qualitatively improve the apparent ion-lipid binding constants obtained from simulations with the original force field (Berger lipids and GROMOS87 ions in combination with the SPC water model) in comparison to experimental data. Furthermore, various parameters characterizing membrane structure, elasticity, order and dynamics are analyzed. It is found that ion binding as observed in simulations involving the modified in comparison to the original force-field description leads to: (i) a smaller salt-induced change in the area per lipid, which is in closer agreement with the experiment; (ii) a decrease in the area compressibility and bilayer thickness to values comparable to a bilayer in pure water; (iii) lipid deuterium order parameters and lipid diffusion coefficients on nanosecond timescales that are very similar to the values for a membrane in pure water. In general, salt effects on the structural properties of a POPC bilayer in an aqueous sodium-chloride solution appear to be reproduced reasonably well by the new force-field description. An analysis of membrane-membrane disjoining pressure suggests that the smaller salt-induced change in area per lipid induced by the new force-field description is not due to the alteration of membrane-associated net charge, but must rather be understood as a consequence of ion-specific effects on the arrangement of lipid molecules.
利用经典原子分子动力学模拟,采用不同的离子-离子和离子-脂质相互作用的力场描述,研究了离子结合对0.5M氯化钠水溶液中1-棕榈酰-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)双层膜的结构、力学、动力学和静电性质的影响。最重要的是,对后者的排斥性 Lennard-Jones 参数进行了修改,从而实现了阳离子和阴离子与脂质膜的近似相似结合。这样做是为了与实验数据相比,定性地改善从使用原始力场(Berger 脂质和 GROMOS87 离子与 SPC 水模型相结合)的模拟中获得的表观离子-脂质结合常数。此外,还分析了表征膜结构、弹性、有序性和动力学的各种参数。结果发现,与原始力场描述相比,在涉及修改后的模拟中观察到的离子结合导致:(i)每个脂质面积的盐诱导变化较小,这与实验结果更接近;(ii)面积压缩性和双层厚度降低到与纯水中双层相当的值;(iii)纳秒时间尺度上的脂质氘序参数和脂质扩散系数与纯水中膜的值非常相似。一般来说,新的力场描述能够较好地再现氯化钠水溶液中盐对 POPC 双层膜结构性质 的影响。对膜-膜分离压力的分析表明,新的力场描述引起的每个脂质面积的盐诱导变化较小,不是由于膜相关净电荷的改变,而必须理解为离子特异性对脂质分子排列影响的结果。