Suppr超能文献

使用基于图的相分割(GPhase)算法对大规模X射线衍射数据进行自动相分割

Automated Phase Segmentation for Large-Scale X-ray Diffraction Data Using a Graph-Based Phase Segmentation (GPhase) Algorithm.

作者信息

Xiong Zheng, He Yinyan, Hattrick-Simpers Jason R, Hu Jianjun

机构信息

School of Mechanical Engineering, Guizhou University , Guiyang, Guizhou 550025, China.

出版信息

ACS Comb Sci. 2017 Mar 13;19(3):137-144. doi: 10.1021/acscombsci.6b00121. Epub 2017 Feb 10.

Abstract

The creation of composition-processing-structure relationships currently represents a key bottleneck for data analysis for high-throughput experimental (HTE) material studies. Here we propose an automated phase diagram attribution algorithm for HTE data analysis that uses a graph-based segmentation algorithm and Delaunay tessellation to create a crystal phase diagram from high throughput libraries of X-ray diffraction (XRD) patterns. We also propose the sample-pair based objective evaluation measures for the phase diagram prediction problem. Our approach was validated using 278 diffraction patterns from a Fe-Ga-Pd composition spread sample with a prediction precision of 0.934 and a Matthews Correlation Coefficient score of 0.823. The algorithm was then applied to the open Ni-Mn-Al thin-film composition spread sample to obtain the first predicted phase diagram mapping for that sample.

摘要

目前,构建成分 - 处理 - 结构关系是高通量实验(HTE)材料研究数据分析的关键瓶颈。在此,我们提出一种用于HTE数据分析的自动相图归因算法,该算法使用基于图的分割算法和德劳内三角剖分,从X射线衍射(XRD)图案的高通量库中创建晶体相图。我们还针对相图预测问题提出了基于样本对的客观评估方法。我们使用来自Fe - Ga - Pd成分扩展样品的278个衍射图案对我们的方法进行了验证,预测精度为0.934,马修斯相关系数得分为0.823。然后将该算法应用于开放的Ni - Mn - Al薄膜成分扩展样品,以获得该样品的首个预测相图映射。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验