Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy; Department of Science, University Roma Tre, Rome, Italy.
Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy.
Biochim Biophys Acta Gen Subj. 2017 Apr;1861(4):910-921. doi: 10.1016/j.bbagen.2017.01.022. Epub 2017 Jan 24.
Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding.
Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28.
We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge.
These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function.
Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
肿瘤抑制因子 p53 的 DNA 结合域(DBD)内的突变存在于超过 50%的人类癌症中,并且可能显著改变 p53 的二级结构,从而损害其功能。p28 是一种两亲性细胞穿透肽,通过疏水相互作用与 DBD 结合,并诱导野生型和突变型 p53 的翻译后增加,恢复其功能。我们使用突变分析来探索哪些二级结构元素可能对 p28 结合至关重要。
使用分子建模、拉曼光谱、原子力光谱(AFS)和表面等离子体共振(SPR)来识别定点和自然发生的突变 DBD 的哪些二级结构可能由于疏水性的离散变化和与 p28 的分子相互作用而发生改变。
我们表明,改变 p53 DBD 中非突变和突变区域疏水性的特定点突变会改变特定的二级结构。p28 的亲和力与突变 DBD 的β-折叠含量呈正相关,并且由于疏水性丧失和表面电荷重新分布导致无规卷曲或无规卷曲的增加而降低。
这些结果有助于我们更深入地了解 p53-DBD 内的突变如何改变二级结构,并深入了解 p28 或类似分子的潜在结构改变如何提高其恢复 p53 功能的能力。
拉曼光谱、AFS、SPR 和计算建模是用于表征 p53DBD 内的突变如何潜在影响二级结构并识别那些易于影响设计用于增加 p53 功能的药物结合亲和力的结构元素的有用方法。