Zhang Zhiqing, Kuzmin Nikolay V, Groot Marie Louise, de Munck Jan C
LaserLab Amsterdam, Department of Physics, Faculty of Sciences, VU University, HV Amsterdam, The Netherlands.
Physics and Medical Technology Department, VU University Medical Center, HZ Amsterdam, The Netherlands.
Bioinformatics. 2017 Jun 1;33(11):1712-1720. doi: 10.1093/bioinformatics/btx035.
The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging.
We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected.
The software and test datasets are available from the authors.
Supplementary data are available at Bioinformatics online.
人脑组织的三维三次谐波产生(THG)图像中的形态可以反映组织的病理状态。然而,THG脑图像的复杂性使得使用现代图像处理工具,尤其是图像滤波、分割和验证工具来提取这些信息具有挑战性。
我们基于高阶统计量开发了一种用于图像滤波的显著边缘增强各向异性扩散模型。我们将固有的三相分割问题分解为两个二相分割问题,每个问题我们都用一个专用模型——基于先验极值加权的活动轮廓来解决。我们将新提出的算法应用于结构正常的离体人脑组织的THG图像,揭示了关键的组织成分——脑细胞、微血管和神经毡,从而能够对这些成分进行统计表征。与手动勾勒的地面真值进行全面比较验证了所提出的算法。与从同一组织区域同时获取的二次谐波产生/自发荧光图像进行定量比较,证实了检测到的主要THG特征的正确性。
作者提供了软件和测试数据集。
补充数据可在《生物信息学》在线获取。