Zekarias Alem, Meldau Eva-Lisa, Bista Shachi, Félix China Joana, Sandberg Lovisa
Uppsala Monitoring Centre, Uppsala, Sweden.
Drug Saf. 2025 Mar 15. doi: 10.1007/s40264-025-01529-6.
Manual identification of case narratives with specific relevant information can be challenging when working with large numbers of adverse event reports (case series). The process can be supported with a search engine, but building search queries often remains a manual task. Suggesting terms to add to the search query could support assessors in the identification of case narratives within a case series.
The aim of this study is to explore the feasibility of identifying case narratives containing specific characteristics with a narrative search engine supported by artificial intelligence (AI) query suggestions.
The narrative search engine uses Best Match 25 (BM25) and suggests additional query terms from two word embedding models providing English and biomedical words to a human in the loop. We calculated the percentage of relevant narratives retrieved by the system (recall) and the percentage of retrieved narratives relevant to the search (precision) on an evaluation dataset including narratives from VigiBase, the World Health Organization global database of adverse event reports for medicines and vaccines. Exact-match search and BM25 search with the Relevance Model (RM3), an alternative way to expand queries, were used as comparators.
The gold standard included 55/750 narratives labelled as relevant. Our narrative search engine retrieved on average 56.4% of the relevant narratives (recall), which is higher when compared with exact-match search (21.8%), without a significant drop in precision (54.5% to 43.1%). The recall is also higher as compared with RM3 (34.4%).
Our study demonstrates that a narrative search engine supported by AI query suggestions can be a viable alternative to an exact-match search and BM25 search with RM3, since it can facilitate the retrieval of additional relevant narratives during signal assessments.
在处理大量不良事件报告(病例系列)时,人工识别包含特定相关信息的病例叙述可能具有挑战性。可以使用搜索引擎来辅助这一过程,但构建搜索查询通常仍然是一项人工任务。为搜索查询建议添加术语可以帮助评估人员在病例系列中识别病例叙述。
本研究的目的是探讨在人工智能(AI)查询建议支持的叙述搜索引擎中识别具有特定特征的病例叙述的可行性。
叙述搜索引擎使用最佳匹配25(BM25),并从两个人工词嵌入模型中为人工参与环节提供额外的查询术语,这两个人工词嵌入模型分别提供英语和生物医学词汇。我们在一个评估数据集中计算了系统检索到的相关叙述的百分比(召回率)以及检索到的与搜索相关的叙述的百分比(精确率),该评估数据集包括来自世界卫生组织药品和疫苗不良事件报告全球数据库VigiBase的叙述。精确匹配搜索以及使用相关性模型(RM3)的BM25搜索(一种扩展查询的替代方法)被用作比较对象。
金标准包括55/750条标记为相关的叙述。我们的叙述搜索引擎平均检索到56.4%的相关叙述(召回率),与精确匹配搜索(21.8%)相比更高,且精确率没有显著下降(从54.5%降至43.1%)。与RM3(34.4%)相比,召回率也更高。
我们的研究表明,由AI查询建议支持的叙述搜索引擎可以成为精确匹配搜索以及使用RM3的BM25搜索的可行替代方案,因为它可以在信号评估期间促进额外相关叙述的检索。